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California High-Speed Rail 2018 Business Plan 

1.0 Introduction 
Forecasts of California High-Speed Rail (HSR) ridership and revenue are estimated using a travel 
demand model. The Business Plan Model – Version 3 (BPM-V3) travel demand model predicts, for a 
specified forecast year, the number of annual trips made by households in California, where these trips 
go within California, and the mode of transportation (i.e., auto, air, conventional rail, or HSR) used to 
make these trips. In order to predict this travel behavior, forecasts of a variety of inputs that impact travel 
behavior such as population, travel costs, and transportation networks are prepared as inputs for each 
forecast year. However, the precise values of these inputs are uncertain (e.g., future auto operating 
costs). Furthermore, other factors, such as travel patterns and travelers’ sensitivities to travel time, evolve 
over time. Thus, to fully understand the uncertainty in the HSR forecasts of revenue and ridership, the full 
range of probable values for these input variables should be analyzed. 

The purpose of this risk analysis is to incorporate the uncertainty associated with model inputs and 
assumed travel behavior into the 2018 Business Plan HSR ridership and revenue forecasts. This risk 
analysis approach builds on the previous risk analysis procedures used for the 2014 and 2016 Business 
Plans. The approach allows the California High-Speed Rail Authority to express probabilities of achieving 
different forecast results for ridership and revenue. 

To develop the full range of possible ridership and revenue forecasts, 150 full model runs were performed 
for each forecast year to estimate relationships between forecast revenue and ridership and selected 
input risk variables. These runs were used to create two models of the model outputs, or “meta-models,” 
for each forecast year. The revenue meta-model and the ridership meta-model were used to generate 
thousands of revenue and ridership forecasts over the entire ranges of identified risk variables without 
requiring computationally expensive and time-consuming full model runs. 

The initial step in the risk analysis was the identification of potential risk factors that could impact ridership 
and revenue forecasts (e.g., potential changes in auto operating costs or the impact of new technologies, 
such as autonomous vehicles). Second, the impact of each risk factor was assigned to a model variable 
or variables, and the variables were systematically narrowed to the set of inputs that would have the 
highest combination of uncertainty and impact on the forecasts. Third, the meta-model was coupled with 
distributions of the model inputs developed and used in a Monte Carlo simulation to develop 100,000 
unique forecasts of revenue and ridership. Finally, probability distributions of total revenue and ridership 
were estimated from the results of the Monte Carlo simulation. 

This methodology is similar to the methodology employed for the 2016 Business Plan Risk Analysis. It 
was refined and enhanced by the following: 

•	 Adopting a combined Gaussian Process Regression (GPR) and Linear Regression meta-model to 
create inputs for the Monte Carlo risk model. 

•	 Replacing the two-step experimental design process with a modified Latin hypercube experimental 
design. 

•	 Increasing the number of risk factors considered in the risk analysis. 

Cambridge Systematics, Inc.
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1.1 Overview of the Risk Analysis Approach 

An eight-step risk analysis approach was employed to forecast revenue and ridership for the 2018 
Business Plan, as shown in Figure 1.1. 

Figure 1.1 Eight-Step Risk Analysis Approach 

1. Identify risk 
factors 

2. Determine 
risk variables 

3. Narrow 
down risk 
variables to 
key variables 

4. Develop 
range for
each risk 
variable 

5. Develop 
distributions 
and 
correlations 
for each 
variable 

6. Run the 
BPM V3 
model to 
obtain data 
points 

7. Create a 
regression 
model (i.e. 
meta model) 

8. Perform 
Monte Carlo 
simulation 
based on 
regression 
model 

Develop Risk Variable Ranges 
and Distributions 

Identify Risk Variables Implement Risk Analysis 

The steps to identify the model assumptions are described below. 

Step 1. Develop a list of possible risk factors to be considered for the revenue and 
ridership risk analysis 

•	 Risk factors are defined as any circumstance, event, or influence that could result in the HSR revenue 
and ridership deviating from its forecasted value. 

•	 A panel of experts was used to develop a set of potential risk factors that could impact future HSR 
ridership and revenue. 

•	 The final risk factors for each forecast year were chosen based on their likelihoods of affecting 
ridership and revenue for the forecast year. 

Step 2. Identify risk variables for each risk factor 

•	 Risk variables are actual variables and constants that can be adjusted in the BPM-V3. As an 
example, auto operating cost (i.e., cost, in dollars, per vehicle mile driven) is a variable that can be 
adjusted in the model. To address the possibility that fuel cost and fuel efficiency may be higher or 
lower than predicted, auto operating cost may be increased or reduced in the risk analysis to test how 
these two risk variables affect ridership and revenue. 

•	 The risk variables have been chosen to represent one or more risk factors identified in Step 1. 

Step 3. Narrow risk variables to key variables for inclusion within each forecast year of 
analysis 

•	 Sensitivity runs of the BPM-V3 were performed for each risk variable that allowed for a quantitative 
comparison of the impacts of each risk variable on ridership and revenue. 

Cambridge Systematics, Inc.
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California High-Speed Rail 2018 Business Plan 

•	 Based on the range and known sensitivity of the risk variables under consideration, final sets of risk 
variables were selected for inclusion for each forecast year. 

Steps 4 and 5. Develop a range and distribution for each risk variable under 
consideration 

•	 The uncertainty associated with each risk variable was quantified by assigning a range and 
distribution for each variable. For example, based on the research on each risk factor affecting auto 
operating cost, such as fuel cost and fuel efficiency, auto operating cost in year 2029 is predicted to 
range from $0.17 per mile to $0.35 per mile (stated in June 2017 dollars1), with a most likely value of 
$0.23 per mile. 

•	 For each risk variable, the minimum, most likely, and maximum values for each forecast year were 
developed based on currently available research and analysis. 

•	 The shape of the distribution of possible values for each variable determined the likelihood of the 
variable’s value, within the set range, under random sampling. For example, it is very unlikely that 
auto operating cost will be the minimum value of $0.17 per mile or the maximum value of $0.35 per 
mile, but very likely it will be close to $0.23 per mile. The auto operating cost distribution is defined 
such that the most likely value will be chosen at a much higher rate than the extreme values, and thus 
the simulated model runs will be more representative of potential future outcomes. 

Steps 6 and 7. Run the BPM-V3 using defined sets of risk variable levels to obtain data 
points for estimation of two sets of regression models (i.e., meta-models) for each 
forecast year that estimates the values of the dependent variables, either HSR revenue 
or ridership, based on values of the selected input risk variables 

•	 The sets of BPM-V3 specified model runs were developed using a modified Latin hypercube sample 
design process to ensure that the data points represented the solution space effectively2. 

•	 A Gaussian Process Regression (GPR) was used to develop the meta-model. GPR does not impose 
a restriction on the functional form of the output (e.g., it does not need to be linear or any particular 
defined non-linear function). Instead, the functional form is developed on the reasonable assumption 
that, if two observations have inputs that are similar, then the output should also be similar. 

Step 8. Perform a Monte Carlo simulation by running the GPR model 100,000 times 
with varying levels of the input variables based on the distributions assigned to the 
variables 

•	 The simulation results in probability distributions of HSR revenue and ridership. 

1		 All dollar figures presented in this document are base year as of June 2017. The 2018 Business Plan escalates all 
reported dollar amounts to December 2017 dollars for consistency with base year Capital and Lifecycle costs. 

2		 Latin hypercube sampling is a statistical method for producing a close to random sample of values from 
a multidimensional distribution. 

Cambridge Systematics, Inc.
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•	 The results of the simulation were analyzed to determine the relative contribution of each risk factor 
on revenue and ridership. 

Each step in the risk analysis required thorough evaluation to ensure key risk factors were understood 
and addressed appropriately. The remainder of this technical supporting document is divided into three 
sections that provide insight into the steps taken to produce the simulation results followed by eight 
appendices that provide additional technical detail. The three sections and the associated appendices 
that provide additional detail are: 

•	 Section 2.0. Identification of Risk Variables (Steps 1 to 3). 

•	 Section 3.0. Development of Risk Variable Ranges and Distributions (Steps 4 to 5). 

–	 Appendix A – Risk Variable Component Specification for Monte Carlo Simulation (a summary of 
the final risk variables and ranges used for the risk analysis) 

–	 Appendix B – High-Speed Rail Constants 

–	 Appendix C – Trip Frequency Constants 

–	 Appendix D – Auto Operating Cost 

–	 Appendix E – Coefficient on Transit Access-Egress Time/Auto Distance Variable 

–	 Appendix F – Quantifying the Effects of Autonomous and Shared Use Vehicles on Year 2040 
Risk Variables 

–	 Appendix G – Exceptionally Long Access and Egress: Experience from Japan 

•	 Section 4.0. Risk Analysis implementation (Steps 6 to 8). 

–	 Appendix H – Technical Details for the Application of GPR 

Cambridge Systematics, Inc.
1-4 
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2.0 Identification of Risk Variables 
This section details the steps taken to identify the risk variables included in the risk analysis, as shown in 
Figure 2.1. 

Figure 2.1		 Eight-Step Risk Analysis Approach: Identify Risk Variables 
(Steps 1 to 3) 

1. Identify risk 
factors 

2. Determine 
risk variables 

3. Narrow 
down risk 
variables to 
key variables 

4. Develop 
range for
each risk 
variable 

5. Develop 
distributions 
and 
correlations 
for each 
variable 

6. Run the 
BPM V3 
model to 
obtain data 
points 

7. Create a 
regression 
model (i.e. 
meta model) 

8. Perform 
Monte Carlo 
simulation 
based on 
regression 
model 

Develop Risk Variable Ranges 
and Distributions 

Identify Risk Variables Implement Risk Analysis 

To develop a set of potential risk factors (Step 1), Cambridge Systematics, Inc. (CS) started by holding a 
series of meetings among staff to review the potential risks originally identified by a panel of experts for 
the 2016 Business Plan Risk Analysis, and identify any changes to those potential risks or new risks that 
could impact ridership and revenue forecasts. Appendix A summarizes the risk factors considered. 

The meetings sought to answer the following question: What real-world risks could impact ridership and 
revenue in years 2029, 2033, and 2040? These forecast years were chosen based on the Business Plan 
opening year dates for the Silicon Valley to Central Valley line and for Phase 1 in the 2018 Business Plan 
as well as a Phase 1 horizon year as shown in Table 2.1. 

Table 2.1		 Description of Each Phase of the HSR System 

Operating
Phase Year 

High-Speed Rail
Segment 

Frequency of
Service 

HSR Bus and Conventional 
Rail Connections 

Silicon Valley 
to Central 
Valley Line 
(VtoV) 

2029 San Francisco to 
Bakersfield 

2 trains per hour 
during the peak 
period and 1 train per 
hour during the off-
peak period 

Includes bus connections between 
Bakersfield and Los Angeles, and rail and 
bus connections between Madera and 
Sacramento 

Phase 1 
(PH1) 

2033 & 2040 San Francisco 
and Merced to 
Los Angeles and 
Anaheim 

Up to 8 trains per 
hour (from all 
destinations) during 
the peak period and 
5 trains per hour 
during the off-peak 
period 

Includes rail and bus connections from 
Madera to Sacramento and rail connections 
in Southern California 

Cambridge Systematics, Inc.
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Table 2.2 identifies the risk variables (i.e., assumptions built into the BPM V3 model) used to represent 
each risk factor (Step 2). The risk variables identified for each risk factor were determined by answering 
the following questions: What model inputs and variables best represent or are influenced by the risk 
factors, and how are the risks best accounted for by the variables in the model? Sensitivity runs of the 
BPM V3 model were run for each risk variable that allowed for a quantitative comparison of the impacts of 
each risk variable on ridership and revenue. Based on this sensitivity analysis, the risk variables that were 
determined to have the greatest effect on HSR ridership and revenue and the highest potential 
uncertainty for each forecast year were selected for inclusion (Step 3). Because the impact of each risk 
factor and the variables representing each factor could vary over the life of the project, the list of risk 
variables differed depending on the operating plan and forecast year under consideration. For example, 
the uncertainty and impact of HSR bus connections are a concern for earlier years when they are a 
critical access mode, while the likelihood of significant autonomous vehicle use affecting HSR ridership is 
not likely until 2040. Appendix A also summarizes the final risk variables and ranges used to represent 
the risk factors. 

Cambridge Systematics, Inc.
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Table 2.2 Variables Included in Risk Analysis for Each Analysis Year 

Number Risk Variable Reasons for Considering Model Variable and Risk Factors Represented 
1 
(All Years) 

Business HSR Mode 
Choice Constant 

The mode constants capture the unexplained variation in traveler mode choices after system variables and 
demographics are taken into account. Unexplained variation may include factors, such as comfort aboard trains, 

2 Commute HSR Mode 
opinions regarding HSR, need for a car at the destination, level of familiarity with HSR, etc. 

(All Years) Choice Constant 

3 
(All Years) 

Recreation/Other HSR 
Mode Choice Constant 

4 Business/Commute Since the trip frequency model is a logit-based choice model, the constants capture the unexplained variation in 
(All Years) 

5 
(All Years) 

Trip Frequency 
Constant 

Recreation/Other Trip 
Frequency Constant 

the number of long-distance trips that travelers will take after accounting for household demographics and the 
accessibility of available destinations. In addition, risks associated with the state of the economy are accounted 
for within the trip frequency constant risk variable. 

6 
(All Years) 

Auto Operating Costs This variable reflects the inherent risks in forecasting future fuel costs; fuel efficiencies; the adoption of 
alternative fuels/electric vehicles; maintenance costs; changes in gas taxes; potential impacts of cap and trade 
on fuel costs; and for 2040, market penetration of autonomous connected vehicles, autonomous vehicle fuel 
economy, higher shares of “shared use” vehicles, and shared use vehicle operating costs. 

7 
(All Years) 

HSR Fares A number of issues could affect actual fares charged to travelers, especially as the system is being opened: 
institution of discount/premium fares (advance purchase, peak/off-peak, first/second class seating); adjustments 
needed to respond to changing auto operating costs or air fares; yield management strategies; etc. 

8 
(All Years) 

HSR Frequency of 
Service 

With final service plans expected to be developed by a private operator, there is uncertainty around the amount 
of service that will be provided based on the markets and strategies that the operator may employ. 

9 
(Year 2029) 

Availability and 
Frequency of Service 
of Conventional Rail 

Access to and egress from the system include connections with both conventional rail services and HSR buses 
(as well as many other modes). Levels of conventional rail service are forecasted based on the State Rail Plan, 
but there is some uncertainty around the availability of the exact amount of conventional rail service. Similarly, 

and HSR Buses that 
connect with HSR 

the amount of connecting bus service could be different than currently forecasted. These connections are most 
critical in the early years of the program when the high-speed rail system does not yet connect the whole state. 

10 Airfares Airfares change and fluctuate over time. Some possible reasons that airlines may change airfares from currently 
(2033 and 
2040) 

forecasted levels include changes in fuel or personnel costs or airport landing fees; changes in equipment or 
efficiency, such as NextGen technology; competitive response to HSR to maintain air market shares; 
acceptance of HSR as a replacement for inefficient; short-haul air service; etc. 
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11		 Coefficient on Transit 
(All Years)		 Access-Egress 

Time/Auto Distance 
Variable 

12		 Number and 
(All Years)		 Distribution of 

Households 
throughout the State 

Between some regions in California, especially in the Silicon Valley to Central Valley line scenario, individuals 
who wish to travel primarily by transit to reach their destination must transfer from an HSR bus or conventional 
rail system before or after traveling on HSR. Experience in France has suggested some uncertainty regarding 
how the need to make these transfers affects overall HSR ridership. The model includes a variable that makes 
HSR less attractive for trips that require a long access or egress trip in relation to the time spent on HSR (or 
another public mode such as conventional rail or air), and the variation in this variable is used to estimate the 
uncertainty around the effect of these transfers on HSR ridership and revenue. 

The forecasted number of statewide households can fluctuate for a variety of reasons, such as inherent 
uncertainty with population forecasts, national and statewide economic cycles, impacts of natural disasters, such 
as continuing draught, changes in U.S. immigration policy, etc. The uncertainty of population forecasts and the 
divergence between different forecasts increase the further out the forecasts are considered. The number and 
distributions of households throughout the state impact household characteristics used in the BPM-V3, such as 
household size, income group, number of workers, and auto ownership. These household characteristics impact 
travel behavior. 

13 Auto In-Vehicle Travel The introduction of autonomous vehicles may change the way travelers view auto travel due to the substitution 
(Year 2040) Time Coefficient of other activities, such as sleeping, reading, Internet communications for the time spent driving. 

14 HSR Reliability Early implementation issues with equipment and operations could affect HSR reliability in the early stages of 
(All Years) each phase. Overall HSR reliability may not match international experience on which the original 99 percent 

reliability assumption is based. 

15 Exceptionally Long 
(All Years) Access and Egress 

Reliably estimating parameters for exceptionally long access and egress from currently available survey data is 
nearly impossible. There are very few observed trips with these attributes (e.g., there are no observations of 
access and egress by any mode over three hours). In addition, access and egress times to main modes are 
generally correlated: if your origin is very far from an airport, you are usually also very far from a train station, 
and vice versa. This will not necessarily be the case for HSR, since it is possible to be far from HSR but close to 
an airport or CVR stations. This risk variable is used as a way to estimate the uncertainty around the effect of 
exceptionally long access and egress on HSR ridership and revenue.3 

16 
(All Years) 

Induced Travel While the model forecasts induced travel resulting from improved accessibility, the relationships are based on 
travel made on existing modes. Induced travel forecasted by the model for HSR is low compared to what has 
been observed on international HSR systems. 

17 
(All Years) 

Visitor Travel The model only forecasts intra-state travel by California residents. However, in 2016, there were 60 million 
annual visitors to California. These visitors, especially those that travel by air to arrive in California, may find 
HSR a desirable option for traveling between various locations in California. 

3 Note that this risk variable is focused on exceptionally long access and egress by any mode in distance ranges where there were virtually no observed data. In contrast, 
Risk Variable 11 focused on transit access or egress in relation to the total trip distance; while observed data existed to estimate the coefficient, the applicability for 
ranges of access/egress to HSR is less certain. 
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3.0		 Development of Risk Variable Ranges and 

Distributions
	

The uncertainty surrounding each risk variable must be quantified by assigning a range and distribution to 
each variable. As shown in Figure 3.1, determining the ranges of the risk variables corresponds to Step 4, 
and developing the distributions corresponds to Step 5 of the risk analysis approach. 

Figure 3.1		 Eight-Step Risk Analysis Approach: Develop Risk Variable Ranges 
and Distributions (Steps 4 to 5) 

1. Identify risk 
factors 

2. Determine 
risk variables 

3. Narrow 
down risk 
variables to 
key variables 

4. Develop 
range for
each risk 
variable 

5. Develop 
distributions 
and 
correlations 
for each 
variable 

6. Run the 
BPM V3 
model to 
obtain data 
points 

7. Create a 
regression 
model (i.e. 
meta model) 

8. Perform 
Monte Carlo 
simulation 
based on 
regression 
model 

Develop Risk Variable Ranges 
and Distributions 

Identify Risk Variables Implement Risk Analysis 

To perform the risk analysis, a range of possible values for each risk variable has to be established in 
order to quantify the uncertainty related to that variable. The absolute minimum and absolute maximum 
values of the variable sets the range of the variable’s forecasted value, while the most likely value 
represents the peak of the variable’s distribution. For each risk variable, the absolute minimum, most 
likely, and absolute maximum values were based on research and analysis of currently available sources. 

A distribution around the minimum, most likely, and maximum values of each risk variable was 
determined based on the characteristics of these three points. The shape of the distribution determines 
the likelihood of the variable’s value, within the set range, under random sampling. The most likely value 
has the greatest likelihood of occurring within the distribution. The shape of the distribution can be 
triangular, PERT, uniform, or another form. PERT distributions were used for variables where there are 
significant tails based on the values assumed for the minimum and maximum (i.e., the minimum and 
maximum are extreme values). A Shape = 4 PERT distribution was assumed to be standard with a higher 
Shape used for Auto Operating Costs, because the maximum and minimum involve several independent 
downside or upside events taking place at the same time, which makes the extreme values less likely 
(and justifies longer, thinner tails). Triangular distributions were used where there is less information 
about the exact shape, but values around the most likely are more likely to occur than the values closer to 
the minimum and maximum (though not to the same extreme as for the PERT distributions). Uniform 
distributions were used where there is high uncertainty regarding the forecast values for the risk variable. 
Figure 3.2 illustrates the shapes of the different distributions used in the risk analysis. 

Cambridge Systematics, Inc.
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Figure 3.2 Shapes of the Distributions Used in the Risk Analysis
	

The following sections identify the ranges of values and distribution for each risk variable, and summarize 
the research and methodology for developing the absolute minimum, most likely, and absolute maximum 
value. The risk variables are used for all forecast years unless noted (see Table 2.2). Appendix A 
summarizes the final risk variables and ranges used to represent the risk factors. 

3.1 High-Speed Rail Constant 

The HSR constant for each of the four trip purposes (i.e., business, commute, recreation, and other) is 
composed of two components: 1) unexplained variation, and 2) terminal and wait time. The unexplained 
variation component represents the desirability of HSR as a mode that is not captured directly by the 
system variables (e.g., travel time, cost, etc.) included in the model. Terminal time is the out-of-vehicle 
time spent traveling from the point of departure from the access mode to the train platform. Wait time is 
the out-of-vehicle time spent waiting on the platform for the train to arrive and the time spent waiting for 

Cambridge Systematics, Inc.
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the train to leave the platform once boarded4. For all forecast years, the range for the HSR constant was 
defined as: 

•	 Minimum. HSR will be perceived by travelers as an equivalent mode to Conventional Rail (CVR), 
and terminal plus wait time will be 45 minutes; 

•	 Most Likely. Calibrated HSR constant with terminal plus wait time of 25 minutes; and 

•	 Maximum. Assumes the impact of unexplained variation is symmetrical around the calibrated 
constant (i.e., the difference between the calibrated and CVR constants, excluding terminal and wait 
time effects, can be added to the calibrated HSR constant to represent that HSR is even more 
desirable), but terminal plus wait time will be 15 minutes. 

The bundling of the unexplained variation and terminal/wait time into a single constant for the BPM-V3 
allows for the estimation of a single regression model parameter in the meta-model used for the risk 
analysis. For the Monte Carlo risk analysis, the unexplained variation and terminal/wait time components 
of the HSR constant are, effectively, unbundled and considered as separate risk variables with 
independent distributions.5 This approach does not require an additional risk variable in the experimental 
design framework yet makes it possible to understand the uncertainty associated with HSR terminal/wait 
time on ridership and revenue independently from the uncertainty associated with the unexplained 
variation of the HSR constant on ridership and revenue since the two variables do not necessarily move 
together. Table 3.1 summarizes the offsets to the HSR constants used for the unexplained variation and 
terminal/wait time components. See Appendix B for additional information on the development of the 
range and distribution of the components of the HSR constant. 

Table 3.1 Ranges of HSR Mode Specific Constant Offsets 

Implied Annual Long-Distance Round Trips
per Capita After Applying Offsets 

Trip Purpose Constant Component Minimum Most Likely Maximum 
Business Unexplained Variation -2.335 0.0 2.335 

Terminal/Wait Time -0.3264 0.0 0.1632 

Commute Business/Commute -1.222 0.0 1.222 

Recreation/Other -0.3264 0.0 0.1632 

Recreation/Other Business/Commute -1.354 0.0 1.354 

Recreation/Other -0.1388 0.0 0.0694 

4 In the BPM-V3, wait time is mode specific and not a function of frequency of service. Frequency of service is an 
explicit variable in the BPM-V3 for the public modes, air, CVR, and HSR. 

5 The unexplained variation uses a PERT distribution, while the terminal/wait time uses a triangular distribution. 

Cambridge Systematics, Inc.
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3.2 Trip Frequency Constant 

The trip frequency constants include the unexplained variation in the propensity of households to make 
long-distance trips within California. The range and variance of the trip frequency constants (i.e. business, 
commute, recreation, and other) are included in the risk analysis in order to reflect both the unexplained 
variation in long distance trip making and the effect of the state of the economy on the proclivity of 
households to undertake long-distance travel. While “the economy” is an overarching risk that affects 
many different decisions regarding travel, one of the most direct and principal impacts on HSR ridership 
and revenue is whether a long-distance trip is even made. The state of the economy affects household 
income and employment levels; the levels of these variables are directly taken into account within the 
model to determine long-distance trip frequency and, by extension, average trip frequency rates6 (e.g., 
people who are out of work or have reduced income due to a recession make fewer long-distance trips). 
Instead of including the distributions of households by various socioeconomic strata directly as risk 
variables in the risk analysis model to account for changes in the state of the economy, the effects of 
these risk variables on trip frequency levels are accounted for within the trip frequency constant risk 
variable. 

The unexplained variation range is based on the range seen in forecasted annual long-distance trip rates 
produced by the model. The most likely value for each forecast year is the calibrated constant. The 
minimum value of the trip frequency constants is specified such that, for year 2040, the trip frequency 
constants produce average trip rates equal to the 2010 rates by trip purpose (long-term trends show 
people’s propensity for making long-distance trips increasing over time). For the maximum value, the trip 
frequency constant is specified to mirror the deviations from the calibrated constants for the minimum 
values (i.e., symmetry of the constant offsets is assumed). 

The range of trip frequency constant offsets for the economic cycles provides a proxy for the underlying 
economic-cycle risk variables being considered. This approach provides a method for specifying a 
continuous range of outcomes, rather than developing multiple input socioeconomic datasets. The 
economic-cycle range was developed by calculating the implied trip rates based on changes in the 
number of workers and income levels from the following scenarios: 

•	 Minimum. Based on HSR-implied trip rate decrease resulting from a three-percent per year decrease 
in employment from the low-growth scenario for three years preceding the forecast year. The direct 
impact of the low economic cycle on trip frequency is determined by changing the distributions of 
households by number of workers and households by income group to reflect the three-percent per 
year decrease in employment. 

•	 Most likely. Resulting trip rates obtained using calibrated trip frequency constants. 

•	 Maximum. Based on HSR-implied trip rate increase resulting from a three-percent per year increase 
in employment from the high-growth scenario for five years preceding the forecast year. The direct 

6 Households stratified by household size, income group, auto ownership, and number of workers are input to the 
BPM-V3. The trip frequency choice model includes coefficients for different levels and combinations of these 
variables (e.g., low or high income). Thus, changing the distribution of the households to account for different 
socioeconomic conditions effectively changes the overall average per household trip rates. 

Cambridge Systematics, Inc.
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impact of the high economic cycle on trip frequency is determined by changing the distributions of 
households by number of workers and households by income group to reflect the three-percent per 
year increase in employment. 

The offsets for unexplained variation and the economic cycles were combined to represent the full range 
of possible outcomes for the development of the risk analysis regression equations. After the constant 
offsets were added together, it was possible to estimate the resulting implied ranges of annual long-
distance round trips per capita as shown in Table 3.2. The implied trip rates vary by year since the trip 
frequency choice model considers the demographic make-up of the population as well as accessibility to 
possible destinations in the determination of whether or not a household member makes a long-distance 
trip. For comparison, the trip frequency constants for the BPM-V3 were calibrated to match “most likely” 
2010 trip rates of 1.87 and 5.14 annual long-distance round trips per capita for business/commute and 
recreation/other, respectively. 

Table 3.2		 Ranges of Implied Annual Round Trips per Capita for Full Model 
Runs Based on Trip Frequency Constant Offsets 

Implied Annual Long-Distance Round Trips
per Capita After Applying Offsets 

Model Year Purpose Minimum Most Likely Maximum 
2029 Business/Commute 1.41 2.21 3.44 

Recreation/Other 4.83 5.86 7.12 

Total 6.24 8.07 10.56 

2033 Business/Commute 1.46 2.28 3.54 

Recreation/Other 4.90 5.95 7.22 

Total 6.36 8.23 10.76 

2040 Business/Commute 1.57 2.46 3.79 

Recreation/Other 5.15 6.27 7.59 

Total 6.72 8.73 11.38 

For the Monte Carlo risk analysis, each component of the trip frequency constant is considered as a 
separate risk variable with independent distributions (i.e., 0 percent correlation). The unexplained 
variation uses a PERT distribution, while the economic cycle component uses a triangular distribution. A 
50-percent correlation is assumed between the business/commute and recreation/other risk components 
for unexplained variation, since there is likely to be some relationship (though not perfect correlation) in 
changes to overall trip-making for different purposes. Perfect correlation is assumed between economic-
cycle risk components for business/commute and recreation/other purposes. More information on the 
development of the range and distribution of the trip frequency constant components is detailed in 
Appendix C. 

Cambridge Systematics, Inc.
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3.3 Auto Operating Cost 

The auto operating cost forecasts for year 2029 and 2033 is assumed to be associated only with privately 
owned non-autonomous vehicles. Auto operating cost is calculated from the following components: 

1.		 Retail fuel prices in California, which are projected using the U.S. Energy Information Administration 
(EIA) forecasts with an assumption that California prices are 12.8 percent higher than the national 
average (based on past trends). 

2.		 An estimate of the market penetration rate of electric vehicles, along with accompanying costs for 
electricity, miles per gallon equivalent (MPGe) rating to determine energy costs for electric vehicles, 
and the cost of electricity. These estimates were developed from the 2017 Annual Energy Outlook 
produced by the EIA. 

3.		 Additional fees and charges based on two scenarios: 

a.		 Cap and Trade implementation (i.e., 5 to 22 percent impact on retail fuel prices);7 and 

b.		 A potential increase in Federal excise taxes. 

4.		 The fuel economy of the entire “on the road” fleet, calculated from the 2017 Annual Energy Outlook 
(AEO). 

5.		 Nonfuel costs, which were obtained from the Bureau of Transportation Statistics (BTS). 

More information on the development of each of these components can be found in Appendix D. The 
minimum, most likely, and maximum were set based on the combined impacts of these components. Note 
that the minimum and maximum scenarios are intended to be extreme ends, and so individual 
components do not correlate as one might expect. For instance, the minimum scenario assumes the 
highest penetration rate of electric vehicles (EV) and the lowest price of gasoline and electricity. As found 
in the 2017 AEO, Californians are more likely to adopt electric vehicles as the cost of owning a 
conventional internal combustion engine (ICE) vehicle rises, but that likely correlation is set to the side in 
developing the minimum and maximum in order to provide the widest reasonable range of values. 

Thus, the minimum combines the lowest fuel price projection, the greatest percentage of electric vehicles, 
high fuel efficiency for the entire vehicle fleet, the least impact from cap and trade, no increase in Federal 
taxes, and low nonfuel costs. This approach is reflected in the following formulas, which were used to 
calculate the minimum, most likely, and maximum auto operating cost: 

7 The exact impact of Cap and Trade on fuel prices is unknown and could change over time based on the industry 
response to reduce emissions. The California Air Resources Board estimated in 2010 that gasoline price changes 
in 2020 could range between 4 percent and 19 percent due to Cap and Trade rules 
(http://www.arb.ca.gov/regact/2010/capandtrade10/capv4appn.pdf). The minimum assumption assumes that Cap 
and Trade would not result in an increase in gas prices. 

(Footnote continued on next page...) 

Cambridge Systematics, Inc.
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Minimum Auto Operating Cost = (1 - %EVs) * (Low CA Gas Price + Low C&T Impact + No Increase in 

Federal Gas Tax) / High ICE Fuel Efficiency + %EVs * (Low CA Electricity Price * 33.78) / High EV Fuel
	

Efficiency + Low Nonfuel Operating Costs
	

Most Likely Auto Operating Cost = (1 - %EVs) * (Most Likely CA Gas Price + Avg(Low C&T Impact, High 

C&T Impact) + No Increase in Federal Gas Tax) / Most Likely ICE Fuel Efficiency + %EVs * (Most Likely
	

CA Electricity Price * 33.7) / Most Likely EV Fuel Efficiency + Most Likely Nonfuel Operating Costs
	

High Auto Operating Cost = (1 - %EVs) * (High CA Gas Price + High C&T Impact + Increase in Federal
	
Gas Tax) / High ICE Fuel Efficiency + %EVs * (High CA Electricity Price * 33.7) / High EV Fuel Efficiency
	

+ High Nonfuel Operating Costs
	

Table 3.3 gives the auto operating cost component values and the resulting minimum, most likely, and 
maximum auto operating cost for each forecast year. Since auto operating cost comprises individual 
components that each has minimum and maximum values (as described above), auto operating costs 
utilize a Shape = 5 PERT distribution. This distribution has somewhat longer tails since the very low or 
high end of the range requires each of the individual components to end up on the low or high end, which 
is a very unlikely occurrence. 

For year 2040, in addition to privately owned non-autonomous vehicles, it is possible that autonomous 
vehicles and shared-use vehicles will have high enough market penetration to affect the overall auto 
operating cost for long-distance trips. Appendix F provides background on auto operating costs for 
autonomous and shared use vehicles and their impacts on overall auto operating costs as used for the 
2040 analysis. Based on the adjustments for autonomous and shared-use vehicles, the year 2040 auto 
operating cost ranges from $0.12 per mile to $0.38 per mile, with a most likely of $0.23 per mile. 

Table 3.3		 Range of Auto Operating Cost for Each Forecast Year by Auto 
Operating Cost Component (June 2017 Dollars) 

Minimum Most Likely Maximum 
2029 Auto Operating Cost ($/Mile) $0.17 $0.23 $0.35 

U.S. Gas Price ($/gal) $1.90 $3.06 $5.33 

California Gas Price ($/gal) $2.14 $3.45 $6.01 

California Electricity Price ($/kWH) $0.17 $0.17 $0.18 

% Electric Vehicles 10.51% 7.86% 6.70% 

MPG 31.5 30.5 29.8 

MPGe 78.64 76.14 74.53 

Non-fuel cost ($/mi) $0.10 $0.11 $0.12 

Cap & Trade ($/gal) $0.23 $0.39 $0.73 

8		 The EPA estimates that each gallon of gasoline contains 33.7 kWH of energy. This number provides a common 
conversion factor between the two kinds of vehicles. (For more information see the May 2011 Regulatory 
Announcement EPA-420-F-11-017 published by the Office of Transportation and Air Quality.) 

Cambridge Systematics, Inc.
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Minimum Most Likely Maximum 
Federal Gas Tax Increase ($/gal) $0.00 $0.00 $0.14 

2033 Auto Operating Cost ($/Mile) $0.17 $0.23 $0.34 

U.S. Gas Price ($/gal) $1.95 $3.19 $5.52 

California Gas Price ($/gal) $2.20 $3.59 $6.22 

California Electricity Price ($/kWH) $0.18 $0.18 $0.18 

% Electric Vehicles 13.35% 9.75% 8.10% 

MPG 34.3 32.8 31.9 

MPGe 85.84 82.11 79.85 

Non-fuel cost ($/mi) $0.10 $0.11 $0.12 

Cap & Trade ($/gal) $0.26 $0.52 $0.77 

Federal Gas Tax Increase ($/gal) $0.00 $0.00 $0.14 

2040 Auto Operating Cost ($/Mile)1 $0.17 $0.23 $0.33 

U.S. Gas Price ($/gal) $2.05 $3.39 $5.75 

California Gas Price ($/gal) $2.32 $3.82 $6.49 

California Electricity Price ($/kWH) $0.19 $0.19 $0.19 

% Electric Vehicles 17.16% 12.23% 9.96% 

MPG 37.9 35.5 34.2 

MPGe 92.76 88.79 85.55 

Nonfuel cost ($/mi) $0.10 $0.11 $0.12 

Cap & Trade ($/gal) $0.33 $0.58 $0.84 

Federal Gas Tax Increase ($/gal) $0.00 $0.00 $0.14 

1 The 2040 auto operating costs presented in the table do not include adjustments for autonomous and shared-use 
vehicles. Once the adjustments for autonomous and shared-use vehicles are accounted for, the year 2040 auto 
operating cost ranges from $0.12 per mile to $0.38 per mile with a most likely of $0.23 per mile. 

3.4 High-Speed Rail Fares 

The base average HSR fare for the Northern California to Southern California market was originally set at 
83 percent of airfares for that market. A fare model with boarding and mileage fare components was 
developed to determine station-to-station fares reflective of the 83 percent standard. Maximum HSR fares 
were later capped at $93 in June 2017 dollars. This fare structure is assumed to be the most likely HSR 
fare scenario for each forecast year in the risk analysis. 

Conventional rail fares and airfares were used to bracket the HSR fares, with the conventional fares used 
to guide the development of the minimum fare values, and the airfares were used to guide the 
development of the maximum HSR fares. The percent difference between the HSR fares and an average 
of a recent Bay Area to LA Basin airfares is used to set the maximum HSR fares (i.e., 42 percent change 
or 1.42 factor difference from Base fares). The percent difference between base HSR fares and an 
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average of the Bay Area to LA Basin conventional rail fares is used to set the minimum HSR fares 
(i.e., -26 percent change or 0.74 factor difference from Base fares). This market was chosen since it is the 
market originally used to set HSR fares, and because it is the largest travel market for the Phase 1 HSR 
system. Table 3.4 shows the range in HSR fares for the terminus-to-terminus interchanges for each 
operating plan. HSR fares use a triangular distribution, with the most likely fares set as the base fares. 

Table 3.4 Range of Terminus-to-Terminus High Speed Rail Fares 
(June 2017 Dollars; Rounded to Nearest Dollar) 

Alternative Origin Station 
Destination 
Station Minimum Most Likely Maximum 

Silicon Valley to 
Central Valley 

San Francisco Bakersfield $69 $93 $133 

Phase 1 San Francisco Anaheim $69 $93 $133 

Phase 1 Merced Anaheim $69 $93 $133 

3.5		 High-Speed Rail Frequency of Service 

The number of roundtrip HSR trains in service during operations may vary from the forecasted service 
levels. The most likely scenario matches the current planned levels of service in the base model runs. 
The minimum is based on the absolute least amount of service that could be expected to be run once the 
system is constructed. The maximum service frequency is based on the maximum amount of service that 
could be expected to run on a Silicon Valley to Central Valley line system for year 2029 and a level of 
service that approaches maximum track capacity, subject to a flexible service plan, for year 2033 and 
year 2040. Table 3.5 shows the range in trains per day for each forecast year. HSR frequency of service 
uses a triangular distribution. 

Table 3.5 Range in High Speed Rail Frequency of Service 

Forecast Year Minimuma 

(Roundtrips/Day) 
Base/Most Likely
(Roundtrips/Day) 

Maximum 
(Roundtrips/Day) 

2029 (Silicon Valley to 
Central Valley) 

14 22 76 

2033 & 2040 (Phase 1) 44 98 152 

a For comparison, in 2017 the Capitol Corridor ran 15 roundtrips per day. 

3.6		 Availability and Frequency of Service of Conventional Rail and 
High-Speed Rail Buses 

This risk variable is only considered for the year 2029 Silicon Valley to Central Valley line scenario 
because these connections have less of an impact once the Phase 1 system is completed. The 
availability and frequency of service of CVR and HSR buses are discrete variables that consider the 
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presence, or lack of, specific improvements to connecting rail services and HSR bus connections. The 
variable is composed of three potential future scenarios (1, 2, and 3) with a probability assigned to each 
scenario. Only one of the three scenarios is chosen in each draw of the Monte Carlo simulation. The 
scenarios and respective probabilities are as follows: 

•	 Scenario 1 (5 percent): 

–	 The Caltrain Electrification project is complete (66 trains per day with terminus at San Francisco 
Transbay). 

–	 No service enhancements above 2017 levels on the San Joaquin Line and Capitol Corridor Line. 

–	 No HSR connecting buses are provided. 

•	 Scenario 2 (40 percent): 

–	 The Caltrain Electrification project is complete (66 trains per day with terminus at San Francisco 
Transbay). 

–	 San Joaquin and Capitol Corridor Route set at 2017 State Rail Plan (SRP) Conservative Plan 
with Service Frequency set to ¾ between Current Operation and Conservative Plan, but with 
Sacramento – Madera Line extending all the way down to Bakersfield to continue providing local 
service within the San Joaquin Valley. 

–	 About 75 percent of the originally planned HSR buses are in service to meet HSR trains. 

•	 Scenario 3 (55 percent): Same as Base Case. 

–	 The Caltrain Electrification project is complete (66 trains per day with terminus at San Francisco 
Transbay). 

–	 San Joaquin and Capitol Corridor Lines set at 2017 SRP Conservative Plan. 

–	 Full set of HSR connecting buses is provided. 

3.7 Coefficient on Transit Access-Egress Time/Auto Distance Variable 

Between some regions in California, especially during Silicon Valley to Central Valley operations, 
individuals who wish to travel primarily by transit to reach their destination must transfer from an HSR bus 
or the CVR system before or after traveling on HSR. International experience has shown that there is 
uncertainty around how the need to make these transfers affects overall HSR ridership. The uncertainty in 
the impact of transfers can have a significant impact on ridership and revenue, especially when the CVR 
or HSR bus leg of the journey is relatively long in relation to the HSR travel length. Thus, this uncertainty 
was included as a risk variable. 
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The transit transfer uncertainty is addressed by varying the range for the parameters associated with 
transit access/egress travel times relative to origin-destination (OD) distances variable. This variable 
appears in the access and egress modal utility functions as follows: 
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In the base model, several threshold parameter options were tested in model estimation, and a value of 
0.2 was ultimately identified. The values of beta (the variable coefficient) were estimated directly, and 
were found to be negative. Separate coefficients were estimated for auto access/egress modes versus 
non-auto access/egress modes (transit and walk/bike), with the magnitude of auto coefficients estimated 
to be much larger. This variable essentially provides a disincentive for selecting a main mode that 
requires a long access or egress time, relative to the entire trip length. The uncertainty associated with 
the variable is only applied for the HSR main mode (i.e., not air or CVR). 

There are few comparable examples of these kinds of transfers in HSR systems around the world, but a 
French rail linkage was identified to serve as a guide. In the French experience, moving from a direct 
CVR connection between Paris and Grenoble to an HSR trip from Paris to Lyon and a connection to CVR 
from Lyon to Grenoble saved 90 minutes of total travel time, but did not result in increased ridership. The 
observed “90-minute penalty” in France served as a rough benchmark for determining a lower bound on 
the model parameters. 

Appendix E details the process taken to develop the minimum parameter values for this variable. The 
minimum threshold value is set to 0.1, since a lower threshold would start to impact local transit access 
and other unrelated trips. The minimum coefficient value is set to -2.0 for business/commute purpose 
and -1.3 for recreation/other purpose. These are set to achieve penalty values of 51 and 66 minutes. 
These penalty value benchmarks come from the penalties the model suggests for the French scenario for 
drive access/egress modes. The lower bound on the transit penalty should not exceed the penalty 
suggested by the model for drive access/egress modes. A 51-minute and 66-minute penalties were used, 
instead of the 90-minute penalty observed in the French experience, because it offered more reasonable 
model behavior overall, and it was not desirable to change the long-distance models in unreasonable 
ways to match a single observed data point. The coefficient and threshold values vary in parallel (i.e., 
perfect correlation) for the full model runs and Monte Carlo simulation. 

The maximum threshold and coefficient values are set to be identical to the calibrated base/most likely 
values since there is no evidence to suggest that the penalty to transfer from transit to HSR should be 
less than the penalty used for CVR and Air that was developed based on observed data. A PERT 
distribution was used for this variable. 

3.8 Airfares 

Airfares are considered as a risk variable for 2033 and 2040. The airfare uncertainty is based on the 
variability in airfares from 2009 to 2016 from routes that serve the major airports of the Northern 
California-Southern California market. Mean, minimum, and maximum annual weighted airfares by route 
were calculated for each year between 2009 and 2016 using the BTS Transtats Airline Origin and 
Destination Survey (DB1BMarket) fare data. Since, the base airfares (i.e., year 2009) represent the 
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lowest point from the range analyzed, the base fares were set as the minimum value. The most likely 
value was set as the decimal factor difference from the base fare and the average of the calculated mean 
airfares across the analyzed routes (i.e., 15 percent higher airfares compared to the base fares). The 
maximum value was set as the decimal factor difference from the base fare and the average of the 
calculated maximum airfares across the analyzed routes (i.e., 31 percent higher airfares compared to the 
base fares). A triangular distribution was used for this variable. 

3.9 Number and Distribution of Households throughout the State 

The number of households (stratified by household size, income group, number of workers, and number 
of autos owned) is a key driver of the amount of long-distance travel in the BPM-V3 model. Statewide 
forecasts of population, households, and employment were assembled from various sources, as shown in 
Figure 3.3, Figure 3.4, and Figure 3.5. The four independent forecasting sources along with the year they 
were produced were the following: 

•	 The California Economic Forecast (CEF) for the California Department of Transportation (Caltrans) 
Transportation Economics Branch (2016). 

•	 Moody Analytics (2016). 

•	 Metropolitan Planning Organization (MPO) data (assembled by CS from plans available through 
April 2017). 

•	 California Department of Finance (DOF), Demographic Research Unit (Baseline 2016). 

The figures also show the forecasts of population, households, and employment used for the 2016 
Business Plan, along with averages from the sources listed above. Only population data were obtained 
from the DOF. 

As shown in Figure 3.3 and Figure 3.5, population and employment forecasts are consistent across the 
sources, while there is a wide variation in the forecasts of households for the state (Figure 3.4). The 
differences in the household distributions are driven by different assumptions regarding future household 
sizes; the Moody Analytics forecasts are based on an assumption of decreasing average household sizes 
over time, while the CEF data are based on an assumption that average household sizes will increase 
over time. 
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Figure 3.3 Statewide Forecasts of Population by Source of Forecast
	

Figure 3.4 Statewide Forecasts of Households by Source of Forecast
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Figure 3.5 Statewide Forecasts of Employment by Source of Forecast
	

For the risk analysis, minimum, most likely (base case), and maximum forecasts of population, 
households and employment are outlined in Table 3.6. Since the minimum, most likely, and maximum 
population forecasts are relatively similar, but household forecasts vary, there are implied differences in 
average household sizes for the minimum, most likely, and maximum forecasts. Likewise, there are 
implied differences in the numbers of workers per household since, like population, the minimum, most 
likely and maximum employment forecasts are relatively similar. The implied differences in average 
household sizes and numbers of workers per household have been reflected by varying the distributions 
of households by household size and households by number of workers in the input socioeconomic 
datasets used by the BPM-V3. 

Table 3.6 2040 Statewide Population, Household, and Employment Forecasts 

Forecast		 Source of Forecast Population Households Employment 
Maximum • Moody Analytics forecasts 47,164,732 17,366,581 21,750,362 

Most Likely • Averages of Moody’s, CEF, and MPO 47,399,849 16,359,211 21,574,851 
(Base Case) data for Households and Employment 

•	 Average of Moody’s, CEF, MPO, and 

DOF data for Population
	

Minimum • CEF forecasts		 47,443,634 15,044,342 21,461,166 

The Moody Analytics, CEF, DOF, and MPO forecasts were provided on a county-by-county basis, and 
disaggregated to transportation analysis zones based on detailed MPO forecasts. County level estimates 
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for any given risk analysis run were developed using a draw from a uniform distribution ranging between 
–1 and +1, by creating a weighted combination of the base case and either the minimum (for negative 
draws) or maximum (for positive draws) distributions. For example, if a run calls for a population based on 
a random draw of -0.4, then the input data for the BPM-V3 model run performed in Step 6 of the risk 
analysis would be the weighted combination of 40 percent of the population, households, and 
employment in the minimum distribution; and 60 percent of the population, households, and employment 
in base case distribution (i.e., the remaining weight). Alternatively, if a run calls for a population based on 
a random draw of +0.9, then the input would be the weighted combination of 90 percent of the population, 
households, and employment in the maximum distribution; and 10 percent of the population, households, 
and employment in base case distribution. 

3.10 Auto In-Vehicle Time Coefficient 

The auto in-vehicle time coefficient is considered as a risk variable for 2040. By 2040, it is likely that 
autonomous vehicles (AV) will compose a nontrivial share of all automobile travel. Because travelers will 
be able to engage in other activities in AVs (e.g., checking email, reading, or even sleeping), AVs offer 
the possibility that being in one’s car may be less onerous than it is today. This will be considered in the 
risk analysis by adjusting the in-vehicle time (IVT) coefficient associated with the auto mode. For the 
purposes of selecting a range for the IVT coefficient, the risk analysis considers the factor by which the 
IVT coefficient would be multiplied. A factor of 1.0 would indicate no change, while a factor of 0.9 would 
correspond to a reduction in traveler sensitivity to auto IVT. 

The Federal Transit Administration (FTA) offers informal guidance on IVT bonuses to use in mode choice 
models for fixed guideway transit modes (relative to bus or auto) in the context of regional travel models. 
Such modes include commuter rail, light rail, subway, etc. The FTA’s guidance suggests that, under 
optimal conditions, the IVT factor could be as low as 0.75. The considerations in determining what factor 
to select include seat availability, travel time reliability, ride quality, and vehicle amenities. There are a 
couple of key considerations in making comparison with the FTA guidance. First, the guidance is specific 
to regional travel, so it is not clear whether it is transferable to long-distance travel. Second, in terms of 
the actual variables mentioned by FTA impacting the selection of a factor, it is not clear that any apply in 
a comparison of AVs to traditional autos. Nonetheless, the value of 0.75 provides a benchmark of what 
has worked in the context of transit. A 2017 study of travel time sensitivities across a variety of modes 
found that a passenger’s sensitivity to travel time was about 30 percent less than that of the driver 
(implying a factor of about 0.70).9 As noted below, a number of studies have considered how AVs will 
impact traveler perception of travel time: 

9		 Litman, T. 2017. Transportation Cost and Benefit Analysis II – Travel Time Costs, Victoria Transport Policy Institute 
(VTPI). 

(Footnote continued on next page...) 
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•	 A 2015 study for the Seattle region considered IVT factors of 1.00 and 0.65 and concluded that the 
value of 0.65 was best based on the region’s travel demand model for the commuter rail mode in the 
mode choice model (which was developed based on observed data).10 

•	 A 2016 scenario analysis in Germany and the U.S. assumed a value of 0.75, but also provided 
bounds of 0.5 and 1.0.11 One important distinction made in this study was that it assumed no impact 
on the first 10 minutes of travel time for a trip (i.e., 1.0 factor for the first 10 minutes). 

•	 IVT factors ranging from 0.5 to 1.0 (in increments of 0.125) were assumed across 24 scenarios in a 
2016 study of long-distance travel made by Michigan travelers.12 

•	 A 2017 scenario-based approach in the Austin region assumed a mean IVT factor for AVs equal to 
0.5 with a range from 0.25 to 0.75.13 

•	 A 2016 survey of 45 modeling experts from around the world regarding the appropriate IVT factor to 
use for AVs in travel models relative to the factor for traditional autos resulted in a suggested average 
factor from 0.8 to 0.9, with a standard deviation of 0.2, depending on trip purpose.14 

The research above indicates a clear upper bound: the sensitivity to travel time would be unaffected by 
the introduction of AVs. This would correspond to a value of 1.0. 

The lower bound and base values are more difficult to identify. On the one hand, IVT factors in the range 
of about 0.75 are commonly accepted for premium transit modes. Experts seem to believe a value close 
to 0.8 or 0.9 would be appropriate in the context of AVs relative to traditional autos. However, for long-
distance travel, it might be reasonable for the bonus given to AVs to be even larger, as it might be easier 
to engage more fully in non-driving activities with a larger amount of time to allocate. 

We recommend a triangular distribution with base of 0.75 and bounds of 0.5 and 1.0. The triangular 
distribution reflects that the likelihood of the auto IVT coefficient at the upper or lower bound values is 
unlikely. There will be some reduction in IVT coefficient to account for the impact of autonomous vehicles; 
the base value will be 0.75 of the estimated for the BPM-V3 coefficient. 

10 Childress, S., B. Nichols, B. Charlton, and S. Coe. 2015. Using an Activity-Based Model to Explore Possible 
Impacts of Automated Vehicles, Transportation Research Record, 2493, 99-106. 

11 Kroger, L., T. Kuhnimhof, and S. Trommer. 2016. Modelling the Impact of Automated Driving – Private Autonomous 
Vehicle Scenarios for Germany and the U.S., Proceedings of the 2016 European Transport Conference, Barcelona, 
Spain. 

12 LaMondia, J., D. Fagnant, H. Qu, J. Barrett, and K. Kockelman. 2016. Long-Distance Travel Mode Shifts Due to 
Autonomous Vehicles: A Statewide Mode-Shift Simulation Experiment and Travel Survey Analysis, Transportation 
Research Record, 2566, 1-11. 

13 Zhou, Y., and K. Kockelman. 2017. Anticipating the Regional Impacts of Connected and Automated Vehicle Travel 
in Austin, Texas, Proceedings of the 96th Annual Meeting of the Transportation Research Board (TRB), 
Washington, D.C. 

14 Kohli, S., and L. Willumsen. 2016. Traffic Forecasting and Autonomous Vehicles. Proceedings of the 2016 
European Transport Conference, Barcelona, Spain. 
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To account for the fact that there is effectively no change in the types of activities a passenger in an auto 
can pursue, we made an adjustment to the range for group travelers. Effectively, the range above 
suggests a discount on the IVT coefficient of between 0.0 and 0.5. To reflect the passenger component 
for shared-ride travel, the range will be divided by the average group size. Then, the effect on the IVT 
coefficient range for shared-ride travel will be to replace 0.5 and 0.75 in the triangular distribution above 
with values equal to [1- (0. 5/group size)] and [1 – (0.75/group size)]. The assumption of a triangular 
distribution will remain the same. Table 3.7 shows the range of factor applied to the IVT coefficient for 
alone and group travelers. 

Table 3.7 Factor Applied to In-Vehicle Time Coefficient 

Risk Variable Minimum Most Likely Maximum 
Alone Travelers 0.50 0.75 1.0 

Group Travelers 0.80 0.90 1.0 

Since all autos are treated by the existing model as a single mode, there is no way to model the impact 
for AVs differently than non-AVs. To account for this, if we assume AVs provide a 10-percent reduction in 
IVT coefficient and our scenario suggests that 50 percent of autos are AVs, we would model this as a 
5-percent reduction in IVT coefficient for all autos. The range in market penetration of AVs for year 2040 
is discussed in Appendix F. 

3.11 High-Speed Rail Reliability 

Experience from international systems suggests that high-speed rail will arrive within 15 minutes of the 
scheduled arrival time 99 percent of the time. There is a risk that this assumption is too high, particularly 
for a new system in the United States and one with final alignments still to be confirmed. 

The shared right-of-way with Caltrain in the Bay Area creates a risk that performance will degrade over 
this corridor, but Caltrain’s current performance makes it likely that the 99-percent reliability target will be 
achieved. A 2011 report regarding Caltrain on-time performance showed a very high reliability of 
98.2 percent over the December 2010 to May 2011 timeframe, based on the BPM-V3 definition of 
reliability (percent of trains arriving within 15 minutes of scheduled time). An unofficial 2016 review of 
Caltrain API15 data by Silicon Valley Data Science suggests that Caltrain reliability may have improved 
since then. Their analysis of 10,918 local train and 9,667 limited train departure delays from stations 
suggests virtually no delays greater than 6 minutes. These results suggest that operations issues in the 
Caltrain corridor are unlikely to increase possible delays to high-speed rail. 

The high-speed rail reliability risk variable will be set at 90 percent as the minimum value, 99 percent as 
the most likely value, and 99.7 percent as the maximum value with a PERT – standard distribution. This 
range and distribution assumption concentrates the reliability around the 99 percent most likely value, but 

15 Silicon Valley Data Science, “Analyzing Caltrain Delays: What We Can Learn,” March 10, 2016, 
https://svds.com/the-trains-project-analyzing-caltrain-delays/. 
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allows for the unlikely possibility that the high-speed rail system will have reliability more traditionally 
experienced in CVR systems. 

3.12 Exceptionally Long Access/Egress to High-Speed Rail 

Project Finance Advisory Limited (PFAL) provided an independent review of the BPM-V3 ridership and 
revenue forecasts developed for the 2016 Business Plan and identified a risk that the BPM-V3 model may 
be over-estimating the usage of high-speed rail on trips that have an exceptionally long access or egress 
leg. This was mostly a concern in the model for the Silicon Valley to Central Valley line as defined in the 
2016 Business Plan, where some origins and destination within California are quite distant from any HSR 
station. 

Reliably estimating parameters for exceptionally long access and egress from our available survey data is 
very difficult, because so few observed trips have these attributes, and they are generally correlated: if 
your origin is very far from an airport, you also are usually very far from a train station, and vice versa. 
This will not necessarily be the case for high-speed rail; many places are far from high-speed rail, but 
close to Air or CVR stations, especially during the Silicon Valley to Central Valley phase. For example, 
conventional rail connects San Diego to the San Diego International Airport, but the closest HSR station 
in Bakersfield will be over 200 miles away during a Silicon Valley to Central Valley Line. Thus, the 
exceptionally long access/egress to high-speed rail risk variable addresses the uncertainty in the 
attractiveness of high-speed rail when accessing or egressing high-speed rail involves very long travel 
times. From our estimation data, we observe almost no access or egress trips to CVR or Air that exceed 
three hours in travel time, so there is no way to rigorously estimate model coefficients that affect such 
long access or egress travel differently than shorter access or egress. As a result, the BPM-V3 model 
may forecast trips with these characteristics. 

These exceptionally long access and egress trips are particularly concerning when made using taxi, 
although existing model parameters already make taxi trips very uncompetitive at long distances. Of 
684 access or egress taxi trip observations from our model estimation data, only 10 were over 50 miles, 
and none was over 70 miles. Although there are very few high-speed rail trips where taxi is used as an 
access/egress modes for a very long distance, evidence suggests that these trips should not exist at all. 

Similarly, when the access or egress trip is made via pick up or drop off, the implication is generally that a 
friend or relative will drive a deadhead leg of the trip roughly equivalent to the overall access or egress 
distance. However, this becomes more difficult when the access or egress leg is exceptionally long. 

For further guidance on these trips we researched international high-speed rail systems, which is 
discussed in Appendix G. 
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The exceptionally long access/egress to high-speed rail risk variable is composed of a set of penalties 
that are added to the access/egress mode choice utilities to limit long-distance trips that rely on 
exceptionally long access/egress: 

•	 A Taxi Cost penalty for long access/egress is added; whereby, taxi costs double after 50 miles.16 

•	 Disutility of Pick Up/Drop Off IVT increases by 0 to 150 percent after two hours. 

•	 Disutility of Pick Up/Drop Off Cost increases by 0 to 150 percent after 90 miles.17 

•	 Disutility of Access and Egress IVT by Auto (i.e., Drive and Park, Rental, Pick Up/Drop Off) increases 
by 0 to 150 percent after three hours, and again by a further 0 to 150 percent after four hours.18 

•	 Disutility of Access and Egress IVT by Transit (sum of transit time and auto-to-transit time) increases 
by 0 to 150 percent after four hours. 

All components vary together, through an index that has a uniform distribution with a minimum value of 
0 percent and a maximum value of 150 percent. The minimum value represents no penalty on long 
access and egress, other than as noted above for Taxi, and is equivalent to the BPM-V3 base run 
forecast. We adopt the uniform distribution because this risk factor is based on behaviors that are not 
observed in our model estimation data nor contemplated in the stated preference survey, so we are 
unable to make reasonable estimates based on data. Second, as this risk factor represents an exclusively 
“down-side” risk, adopting a uniform distribution represents a conservative approach. 

3.13 Visitor Travel 

The BPM-V3 ridership and revenue forecasts only include intra-state travel made by residents of 
California. However, over 60 million people visit California each year; some of whom may choose to travel 
via high-speed rail. Using professional judgement, PFAL reported, with 90 percent confidence, that 
visitors to California may increase ridership by 5 to 10 percent for each operating phase. In 2029, the 
Silicon Valley to Central Valley high-speed rail will have just opened and will not include a direct 
connection to the Southern California region. Since it is likely that visitors to California will be more likely 
to visit sites in the Bay Area and Southern California regions, the increase in ridership for the Silicon 
Valley to Central Valley phase resulting from visitors was reduced to a range of 3.5 to 7 percent from the 
PFAL prediction of 5 to 10 percent. Error! Reference source not found. shows the PFAL estimate of 
high-speed rail visitor trips for Phase 1 and the reduced estimate of high-speed rail trips made by visitors 
for the Silicon Valley to Central Valley phase. 

16 Of 684 access or egress taxi trip observations from our model estimation data, over 99 percent were under 
50 miles. 

17 For valid observed Air and CVR trips in the mode choice model estimation data made with Pick Up/Drop Off as the 
access mode, over 98 percent had access times under two hours and access distance under 90 miles. 

18 For valid observed Air and CVR trips in the mode choice model estimation data, over 99.5 percent had access 
times under three hours. 
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Table 3.8 Range in High-Speed Rail Visitor Trips
	

Minimum (based on
90% confidence) 

Median Maximum 
(based on 90%
confidence) 

Year 2029 Silicon Valley to Central Valley 

Percentage Increase in Base Run Ridership 3.5% 5.0% 7.0% 

High-Speed Rail Trips by Visitors (millions) 0.50 0.72 1.00 

Year 2033 Phase 1 

Percentage Increase in Base Run Ridership 5.0% 7.5% 10.0% 

High-Speed Rail Trips by Visitors (millions) 1.78 2.67 3.56 

Year 2040 Phase 1 

Percentage Increase in Base Run Ridership 5.0% 7.5% 10.0% 

High-Speed Rail Trips by Visitors (millions) 1.97 2.95 3.93 

For the risk analysis, we apply a uniform distribution to the ranges discussed above. Since the PFAL 
range was developed within a 90-percent confidence range, the risk analysis range was widened to 
represent 100 percent probability of occurrence by adding +/- [(Maximum Visitor Ridership –Minimum 
Visitor Ridership)*.05] to each year. The risk analysis minimum, median, and maximum visitor ridership 
for each year are shown in Error! Reference source not found.. 

Table 3.9 Visitor Travel High-Speed Rail Ridership (Millions) 

Risk Variable Minimum Mid-point
(PFAL Median) 

Maximum 

Year 2029 VtoV 0.48 0.72 1.03 

Year 2033 Ph1 1.69 2.67 3.65 

Year 2040 Ph1 1.87 2.95 4.03 

We assume a 50-percent positive correlation between visitor travel high-speed rail ridership and total 
California resident high-speed rail ridership. Some risk analysis factors that contribute to lower high-
speed rail resident ridership will also affect visitor ridership. However, there are some risk analysis 
variables that will only affect resident travel, or will affect resident travel differently from visitor travel. It is 
assumed that the geographic distribution of visitor high-speed rail ridership (i.e., the distribution of station-
to-station boardings) is identical to resident high-speed rail ridership, and thus revenue can be calculated 
by multiplying ridership by average fare of resident travel for each simulation run. This risk factor results in 
an increase in high-speed rail ridership and revenue regardless of where it falls on the minimum to 
maximum range of values. 
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3.14 Induced Travel 

The BPM-V3 forecasts approximately 4 percent of the high-speed rail ridership are induced trips. Induced 
trips are new long-distance trips made by households due to the introduction of high-speed rail. For 
example, with the introduction of high-speed rail, households can now travel from Fresno to San Jose in 
~60 minutes via high-speed rail that before took ~150 minutes by car. This significant decrease in travel 
time may result in households taking more trips to San Jose on top of all other long-distance trips they 
took before. These induced trips may be replacing short-distance trips (e.g., a shopping trip made within 
Fresno is replaced by a shopping trip made in San Jose); or may be due to a household increasing the 
number of overall trips they make (e.g., a new work trip to San Jose to attend a work meeting in person 
rather than taking the meeting via phone). 

PFAL, as part of their independent review of the 2016 Business Plan high-speed rail ridership, believed 
with 90 percent confidence that induced travel represents 0 to 20 percent additional ridership (with a most 
likely value of 10 percent) on HSR systems. It is our judgement that this assessment is on the high-side; 
and to be conservative, we have set the additional induced travel range for the risk analysis at 0 to 
15 percent, with a most likely value of 7.5 percent. A triangular distribution is assumed. 

The same characteristics that drive uncertainty in the BPM-V3 results drive induced travel uncertainty. 
Thus, the additional induced travel high-speed rail ridership for each simulation run is calculated by 
multiplying the induced travel percentage by the resident high-speed rail ridership for each simulation run. 
This results in lower additional induced travel when overall high-speed rail ridership is lower. In addition, 
we assume a 50 percent negative correlation with the trip frequency constant. This assumption is based 
on the fact that there is a finite number of total trips that households will make. The more trips accounted 
for in the BPM-V3 model, the less induced trips that can potentially be made. With the exception of Monte 
Carlo simulations where 0 percent additional induced travel is selected, this risk factor results in an 
increase in high-speed rail ridership and revenue regardless of where it falls on the minimum to maximum 
range of values. 
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4.0 Implementation of Risk Analysis 
Mathematical models such as the BPM-V3 provide a simplified understanding of causal processes 
affected by thousands of variables to provide shortcuts to predicting their outcomes, turning a complex 
reality into a streamlined process. However, as models more closely approach reality with highly 
disaggregate results (e.g., the number of travelers and their mode choices between all transportation 
analysis zones in California), they become more complex and computationally intensive. While the full 
BPM-V3 model provides highly disaggregate results, it takes hours to run.19 

There are inherent uncertainties associated with estimated parameters used in the BPM-V3 and the 
model input data; consequently, uncertainty surrounds model output as well. In order to assess the 
likelihoods of achieving different levels of ridership and revenue, multiple applications of the BPM-V3 with 
varied values for the parameters and model inputs are used to provide ranges of future ridership and 
revenue levels as well as the probability of achieving those levels. 

The risk analysis for the 2018 Business Plan focuses on revenue and ridership totals and requires 
thousands of data points considering the numbers of risk factors and risk variables described in Section 
3. It is not feasible to run thousands of full BPM-V3 model simulations, but by building models of the 
model forecasts of ridership or revenue based on the results of 100 to 200 applications of the BPM-V3 
with varied inputs for the identified risk variables for each forecast year, it is possible to predict the 
revenue or ridership totals that would be forecast by a full model run in a fraction of a second using a 
Monte Carlo simulation. These meta-models provide effective and efficient tools for performing the risk 
analysis. 

As shown in Figure 4.1, the risk analysis is implemented in three steps. Each meta-model is developed 
from a set of full BPM-V3 runs (Step 6). The independent variables used to develop the meta-model are 
the risk analysis variables, and the dependent variables are either HSR revenue or ridership. Each full 
BPM-V3 model run provides one data point for use in estimating the regression equations (Step 7). 
Monte Carlo simulations with 100,000 draws each for each forecast year are then run using the ridership 
and revenue meta-models. The Monte Carlo simulations use different combinations of values for the risk 
variables, with the values drawn from the assigned risk variable distributions (Step 8). The ridership and 
revenue outputs from these runs are then used to develop the ranges of ridership and revenue along with 
their probabilities of occurrence. 

As noted in Section 1, the 2018 Business Plan risk analysis has built on the procedures used for the 2016 
Business Plan risk analysis by enhancing the meta-models developed in Step 7. While linear regression 
is still used to develop initial meta-models, a Gaussian Process Regression (GPR) approach is also used 
to refine the linear regression models for the final meta-models. The remainder of Section 4 is structured 
as follows: 

19 It takes approximately 12 hours to run the BPM-V3 model using a “one-thread set-up.” It takes one hour to run the 
BPM-V3 model using a “12-thread set-up,” which is the maximum possible threads that can be run on one 
standard computer. 
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•	 Section 4.1 describes the derivation of the meta-models including the linear regression and GPR
	
enhancements
	

•	 Section 4.2 describes the approach for developing the data used to estimate the meta-models 

•	 Sections 4.3 and 4.4 describe the resulting revenue and ridership meta-models for each forecast year 

•	 Sections 4.5 and 4.6 summarize the revenue and ridership risk analysis results for each forecast year 

•	 Section 4.7 discusses the relative importance of the various risk variables in the revenue and 

ridership forecasts
	

Figure 4.1		 Eight-Step Risk Analysis Approach: Implement Risk Analysis 
(Steps 6 to 8) 

1. Identify risk 
factors 

2. Determine 
risk variables 

3. Narrow 
down risk 
variables to 
key variables 

4. Develop 
range for
each risk 
variable 

5. Develop 
distributions 
and 
correlations 
for each 
variable 

6. Run the 
BPM V3 
model to 
obtain data 
points 

7. Create a 
regression 
model (i.e. 
meta model) 

8. Perform 
Monte Carlo 
simulation 
based on 
regression 
model 

Develop Risk Variable Ranges 
and Distributions 

Identify Risk Variables Implement Risk Analysis 

4.1 Meta-Model Derivation 

Just as travel demand models (TDM), such as the BPM-V3, are simplified mathematical abstractions of 
the very complex “real” travel behavior processes they represent, meta-models are, in turn, simplified 
representations of TDMs. Meta-model runs can be produced much more quickly than full TDM models 
since they produce only a single headline number (e.g., total ridership) using a limited number of key 
input variables. In contrast, TDMs produce detailed, trip-level information (e.g., interchange mode shares 
or station-level boardings and alightings) from detailed input datasets with millions of data points. While 
the underlying TDM model may require hours or days to generate outcomes from one set of inputs, a 
meta-model typically can make a forecast of the headline number in a fraction of a second. This facilitates 
the generation of outputs for thousands or millions of different combinations of input variables through the 
use of the meta-model in a Monte Carlo simulation. This approach allows for the estimation of the range 
and probability distribution of outcomes and the analysis of the relationships between the various inputs 
and headline forecasts that would be produced by the TDM. 

The selection of the mathematical form of the meta-model is an important part of meta-model 
development. Because the speed of meta-model computation is critical, it is common to employ a linear 
regression (LR) model form, as this kind of model offers exceptionally fast computational performance for 
generating point forecasts for each new set of inputs. However, the adoption of a LR meta-model does 
come with some limitations. Most importantly, the use of LR requires the modeler to develop a defined 
functional form of the relationship between the inputs and output. The parameters of the defined function 
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are set to provide the best fitting model for the observed data but, if the defined functional form does not 
fit the data well, the meta-model may not provide accurate results. 

Figure 4.2 provides an illustrative example of such a limitation with LR models in one dimension. Nine 
observations (blue circles) of an outcome (e.g., ridership or revenue output by the BPM-V3) are plotted on 
the Y axis, with input variable levels plotted on the X axis. A simple LR (slope + intercept) is constructed, 
shown by the red line. This model fits the data only moderately well. Alternatively, a second order 
polynomial LR, shown in green, fits better, although still not perfectly. Increasingly complex LR model 
functions can be created to iteratively improve the fit of the LR by including various alternative linear 
transformations and interactions of explanatory variables. However, in doing so, there is a risk of 
“overfitting” the LR model by too closely matching the observed data points and degrading the quality of 
the LR forecast for new points. 

Figure 4.2 A Linear Regression Example in One Dimension 

O
ut
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m

e 
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l 

Risk Factor Input Level 
Source: Cambridge Systematics 

The figure also illustrates another important shortcoming of the LR model. The two observations (blue 
dots) in the center of the figure are both notably lower than the initial LR fitted line (red), and both also 
lower than the improved LR model (green). The LR model is predicated on the assumption that residuals 
(the deviation between the observed points and the fitted regression line) are identically and 
independently distributed (IID). If that were correct, each observation should be equally likely to be above 
or below the fitted regression line, regardless of whether other nearby points are above or below the line. 
However, when the underlying model is smooth and deterministic,20 this IID assumption is violated: other 
nearby observations will tend to be high or low together, not independently. Such a relationship between 
observations is called auto-correlation (see Figure 4.3). The presence of auto-correlation provides an 
opportunity to create a meta-model that better captures the output data points than a meta-model based 
on simple LR. 

20 A model is smooth if an infinitesimally small change in the inputs will produce an infinitesimally small change in 
outputs, and there are not sudden jumps in the output values when input values cross some threshold. A model is 
deterministic if it always produces exactly the same output value for the same set of input values, and there is no 
random variation in the outputs. The BPM-V3 model is a deterministic model. 
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Figure 4.3 Auto-Correlation 

Auto-correlation occurs when two 
observations tend to be similar if they are 
close to each other, while observations 
that are far apart have lesser similarity. 

With typical correlation, the magnitude of 
the explanatory data is important, and all 
data points contribute equal information: 

For auto-correlated data, high values tend 
to cluster around other high values, and 

lows with lows. More distant observations 
provide less information than nearby 

ones, and global trends may exist, but are 
not required to exist: 

Source: Cambridge Systematics. 

Gaussian Process Regression (GPR) is a nonparametric “machine learning” tool for regression analysis, 
which explicitly harnesses the auto-correlation property of the underlying main model. Like LR methods, 
GPR estimates the output value (i.e. the dependent variable) for any set of inputs; it is developed using 
the set of observed inputs and their observed outputs21. However, as a nonparametric model, GPR does 
not impose a restriction on the functional form of the output (e.g., it does not need to be linear or any 
particular defined nonlinear function). Instead, it is simply assumed that output is auto-correlated: if two 
observations have inputs that are similar, then the output should also be similar. To achieve this, a GPR 
computes the expected value of the output for any set of inputs as the weighted average of other 
observations where both the input and output are known, setting the weights higher for nearer 
observations and lower for more distant observations. In this context, the “distance” between two 
observations is not based on an actual physical distance, but rather an abstract measure of Euclidean 
distance across an N-dimensional space, where N is the number of distinct input variables being varied. 

21 An example for the risk analysis would be the forecast revenue based on different input auto operating costs. 
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Although GPR has not been widely used for transportation planning meta-model applications, it is widely 
used for computer simulation meta-models in other fields, and represents a reliable and well-documented 
approach for improving meta-model results in relationship to simpler, underlying models such as LR. 
Because of its desirable properties, discussed below, and the relative ease and speed of application, 
GPR is the state-of-the-practice approach for modern meta-models of computer experiments.22 

The results of a GPR are illustrated in Figure 4.4, which constructs a GPR predictor on the same 
observations from the LR models contemplated in Figure 4.2. The expected value of the GPR at any point 
is shown by the dashed red line, and the distribution around the expectation (as measured by two 
standard deviations) is shown by the gray area. A few salient features of the GPR can be observed in 
Figure 4.4. 

Figure 4.4 An Illustrative Gaussian Process Regression 

Source: Cambridge Systematics. 

Most notably, when GPR is applied as a meta-model for a deterministic travel demand model, there are 
no residuals in predictions for sampled observations used in model estimation. That is, the difference 
between the predicted value from the meta-model and the observed value is always zero. Instead, the 
expectation line always passes exactly through every observation point. This has implications for 
evaluating the model goodness of fit (discussed below). Moreover, because the simulation model (e.g., 
the BPM-V3 for the 2018 Business Plan risk analysis) is deterministic, there is also no variance in the 
predictions at those points. In Figure 4.4, this is reflected in the collapse of the height of the gray ribbon to 
zero at each observation. 

An important consequence of this is that GPR models cannot be evaluated based on traditional 
“goodness of fit” measures (e.g., R2) derived from the estimation data. Instead of measuring goodness of 

22 Santner, T. J., B. J. Williams, and W. I. Notz. 2013 The design and analysis of computer experiments, Springer 
Science & Business Media. 
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fit directly based on estimation data, it is necessary to measure fit on a validation data set that is not used 
for model estimation. Because it is usually expensive to collect additional validation data, it is preferred to 
conduct K-fold cross validation (CV). For this, the set of observations is randomly partitioned into 
K subsets (typically 5 to 10; for this risk analysis, we have used K = 10). The entire model is re-estimated 
using K-1 subsets of the data (leaving one out), and a model score is calculated by using the result to 
predict the outcomes on the remaining held-out subset of observations. The entire process is repeated 
iteratively holding out each of the K subsets one at a time, and then averaging the resulting scores. The 
CV score is interpreted in roughly the same manner as R2 for LR models, such that a score of 1.0 
indicates a perfect prediction, and a score of 0.0 is achieved by predicting the global mean of the 
dependent variable. When the GPR is applied to de-trended data (i.e., on top of a LR model), the 
resulting CV scores are calculated based on the residuals from the LR model, so they represent the 
relative improvement in fit over the LR result, in which case they provide insight into the value of the GPR 
process, but are not directly comparable to the R2 values. 

Another feature of the GPR is that it is not neatly summarized by a limited set of parameters, but instead 
the entire estimation dataset is explicitly incorporated into the model, and must be available to generate 
predictions for new points. This contrasts with LR models, where the estimation data is used to develop 
parameter values, but then only those parameters (and not the entire estimation dataset) are needed to 
generate new values. Fortunately, this requirement is not limiting for meta-modeling applications such as 
this, as the number of observations used is manageably small. 

4.2 BPM-V3 Model Runs 

An experimental design for model runs lays out the number of model runs needed to support the risk 
analysis and the combination of risk variable values that compose each model run. For a complex model 
such as BPM-V3, it is important to design experiments to provide data to the risk analysis in an efficient 
manner, as the computational cost of each individual experiment is high. 

The BPM-V3 is a deterministic simulation model whose meta-models are best supported by a “space 
filling” design of experiments, such as Latin hypercube draws.23 A Latin hypercube sample for one 
dimension is constructed by subdividing the distribution of each input factor into N equally probable 
ranges, and drawing one random sample within each range. For example, if an input factor is assumed to 
be uniformly distributed between 0 and 100, that distribution can be divided into four regions (0-25, 25-50, 
50-75, and 75-100), and one random draw can be made in each region. This ensures better coverage of 
the entire input range than making four random draws from the full 0-100 range, which could easily result 
in a cluster of observations in one part of the range and a large void elsewhere. In other words, for the 
high-speed rail risk analysis, this approach ensures that the random draws for the risk variables used in 
the full BPM-V3 runs used to generate the data for the estimation of the meta-model are not clustered 
around the minimum, most likely, or maximum values for any of the variables. Generating a 
multidimensional Latin Hypercube sample for use with multiple input variables follows this same basic 
technique. However, the various draws in each dimension are randomly reordered before being joined 

23 Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn. 1989. Design and analysis of computer experiments, 
Statistical Science, 409-423. 
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with draws from other dimensions to avoid unintended correlation (such as joining values from multiple 
dimensions that tend to decrease ridership). 

Various techniques exist to conduct this random reordering, and there is no agreement in the literature 
about the “best” Latin hypercube design. The method we have implemented to achieve a relatively good 
design for this risk analysis is to generate numerous possible orderings of the draws for each dimension. 
Then, moving sequentially through the dimensions, we iteratively select the ordering that minimizes the 
maximum correlation with the draws for each of the previously selected dimensions. This approach, which 
minimizes correlation for previous dimensions, without accounting for the possible impact on the 
correlation of dimensions yet to be considered, is reasonably effective if the pool of candidate orderings is 
sufficiently large. 

The use of the Latin hypercube design is a change from the fractional factorial design used for the 2016 
Business Plan risk analysis. The Latin hypercube design of experiments is advantageous over a factorial 
or grid-based design, as every experimental observation can provide useful information, even when some 
input factors are potentially unimportant or spurious. Figure 4.5 provides an illustration of this: because 
every run is unique in each input dimension, all of the observations provide unique and useful information 
even if one dimension is spurious. 

One additional advantage of a Latin hypercube design of experiments is that the required number of 
experimental runs is not explicitly dependent on the dimensionality of the input variables. With a factorial 
or grid-based design, the number of experiments required expands exponentially with the number of input 
dimensions. This can be partly mitigated by using a fractional factorial design (that does not require an 
experiment at every grid point), but even fractional factorial designs can require very large numbers of 
experiments to support high dimensional exploratory analysis.24 A large fractional factorial design can 
also be subject to irregular requirements for sample size: depending on the resolution and existing 
dimensionality of the design, increasing the dimensionality of the risk factor space by one dimension may 
result in no need to expand the number of experiments, or it may require tripling the number. 

The Latin hypercube design does not demand any particular number of experiments. Adding a dimension 
without changing the number of experimental runs marginally degrades the efficiency of the design. 
Conversely, increasing the number of experimental runs while holding the dimensionality of the problem 
content can marginally improve the results. Practical experience across multiple domains has led to a 
“rule of thumb” that good results for prediction can be obtained from 10 experimental data points per 
input variable dimension.25 Using this “rule of thumb” 150 BPM-V3 model runs were run for each model 
year and operating plan, as none included more than 15 unique risk variables. 

24 As a practical example, the fractional factorial design used for the 2016 Business Plan risk analysis effectively 
limited the number of risk variable that could be evaluated to 10. 

25 Loeppky, J., J. Sacks, and W.J. Welch. 2009. Choosing the sample size of a computer experiment: A practical 
guide. Technometrics, 366-376. 

Cambridge Systematics, Inc.
4-7 



Figure 4.5 Contrasting Experimental Designs 

 

    
       

     
      

        
   

   

A representation of a factorial design (in red) which 
covers the edges of the solution space, and a Latin 

hypercube (green) with the same number of runs, with 
better coverage of the middle of the space. 

If the Y dimension is not important, the factorial design 

collapses to only 3 data points, while the Latin 


hypercube still has 9.
	

   

  
 

    

  

   

          
          
            

    

      

         
             
           

        
          

California High-Speed Rail 2018 Business Plan 

Source: Cambridge Systematics. 

4.3 Final Revenue Regression Models 

The forecast revenues from the 150 BPM-V3 runs were used as data points for developing LR equations 
of the log of revenue as a function of the risk variables, used as the initial step in defining the meta-model 
for each forecast year. The final set of linear regression models for each model year and operating plan 
took the following functional form: 

ln(Revenue) = Constant + β1 × Var1 + β2 × Var2…. 

This model is a main effects model with no interaction terms and de-trended the observed data well. The 
estimated models are shown in Table 4.1. All models have R2 values above 0.9, indicating that the linear 
regression model fits the BPM-V3 data points very well, and all of the signs and magnitudes of model 
coefficients are sensible. For example, a positive value on auto operating cost indicates that, as auto 
operating cost increases (i.e., it becomes more expensive to drive), HSR revenue also increases. 
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Table 4.1 Revenue Linear Regression Model Coefficients
	

2029 – VtoV 2033 – Phase 1 2040 – Phase 1 
Constant and Regression Model
Variables Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic 
Constant 18.9132 65.16 20.3300 74.06 20.4995 73.53 

HSR Mode Choice Constant – Business 0.2239 46.33 0.1955 43.88 0.2040 44.97 

HSR Mode Choice Constant – Commute 0.0648 7.08 0.0588 7.08 0.0569 6.72 

HSR Mode Choice Constant – 
Recreation/Other 

0.4431 52.52 0.4196 54.77 0.4189 53.72 

Trip Frequency Constant – 
Business/Commute 

0.4177 11.93 0.4054 12.61 0.4109 12.50 

Trip Frequency Constant – 
Recreation/Other 

0.5182 6.58 0.6474 8.97 0.6430 8.77 

Auto Operating Cost 0.0122 6.71 0.0117 6.82 0.0125 8.72 

HSR Fare 0.1126 3.67 0.1546 5.52 0.1450 5.09 

HSR Headway -0.2926 -16.47 -0.2300 -16.39 -0.2301 -16.09 

HSR Reliability 1.4659 5.20 0.6992 2.73 0.6561 2.51 

HSR Access/Egress Connecting 
Service – Scenario 1 

-0.0510 -2.40 NA NA NA NA 

HSR Access/Egress Connecting 
Service – Scenario 3 

0.0034 0.38 NA NA NA NA 

Airfare NA NA 0.0293 0.47 0.0230 0.36 

Coefficient on Transit Access-Egress 
Time/Auto Distance Variable 

0.1107 2.79 0.0081 0.23 0.0079 0.22 

Demographic Forecast CEF -0.0362 -2.14 -0.0377 -2.44 -0.0892 -5.67 

Demographic Forecast Moody’s 0.0629 3.72 0.0652 4.19 0.0529 3.33 

Automobile IVT Coefficient NA NA NA NA -0.4675 -6.45 

Extremely Long Access/Egress -0.0288 -2.89 0.0115 1.26 0.0122 1.31 

Model Statistics 

R2 0.978 0.977 0.977 

Adjusted R2 0.975 0.975 0.975 

The linear regression trend model provides an initial prediction for the (log of) revenue generated by the 
BPM-V3 model for each run. The difference between the linear regression prediction and the actual 
revenue observed for each run represents the residual, which is used as the dependent variable of a 
GPR model. As noted in previous sections, the GPR model reduces the differences between the forecast 
revenue using the linear regression model for the meta-model and the revenue that would actually be 
forecast using the full BPM-V3. The GPR model is fitted using the 150 residual values and the same 
explanatory risk factor data. 
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The cross-validation results for the revenue GPR regression models are provided in Table 4.2. It is 
important to note that these scores in the first row represent a measure of improvement in model fit above 
and beyond the fit achieved from the linear regression model alone, instead of the absolute model fit. The 
2029 cross validation score is lower than for the 2033 and 2040 forecasts in large part due to the 
presence of three discrete connecting service scenarios in this forecast (see Section 3.6), and in 
particular the singly unlikely Scenario 1, for which predictions are hampered by the scarcity of data (only 
eight BPM-V3 runs are used to represent this unlikely scenario). Nevertheless, the GPR still provides a 
notable improvement in model fit above and beyond the linear regression model for this forecast. The 
second row shows the root mean squared error (RMSE)26 of the cross-validation prediction of annual 
system revenue (in millions of dollars) across all observations in each 150 run dataset. In order to provide 
an order of magnitude comparison of the average error measured by the RMSE, the table also shows the 
long-distance revenue forecast for the 2018 Business Plan and the RMSE as a percent of the long-
distance revenue. These results indicate that for the Phase 1 forecasts, the meta-model is generally 
predicting the output of BPM-V3 within 0.5%. 

Table 4.2		 Revenue Gaussian Process Regression Model Cross Validation 
Results 

2029 – VtoV 2033 – Phase 1 2040 – Phase 1 
GPR Cross Validation Score 0.747 0.987 0.983 

RMSE of Cross Validation Predictions 
(millions of 2017$) 

$14.4 $7.1 $9.0 

Long Distance HSR Revenue – 2018 
Business Plan Base Runs (millions of 
2017$) 

$823 $2,085 $2,329 

RMSE as a percent of Base Run Long 
Distance HSR Revenue 

1.7% 0.3% 0.4% 

To generate a final prediction of the revenue for a particular set of risk factor inputs, the revenue arising 
from additional induced and visitor travel risk factors is added to the revenue resulting from the GPR 
meta-model. The revenue arising from the induced and visitor travel risk factors is over and above the 
revenue resulting from HSR travel modeled using the BPM-V3 model and captured as part of the GPR. 

4.4 Final Ridership Regression Models 

The ridership forecasts from the 150 BPM-V3 runs were used as data points for developing the meta-
model linear regression equations of the log of ridership as a function of the risk variables for each 

26 RMSE is a measure of average error literally calculated as the square root of the mean of the squared differences 
for a set of observed and modeled values. In this case, the observed values were the revenues forecast using the 
BPM-V3 for each of the 150 full model runs used to estimate the LR and GPR. The modeled values were the 
revenues estimated by applying the GPR using the input values for the risk variables defining the 150 full model 
runs. 
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forecast year. The final set of ridership linear regression models for each model year and operating plan 
took the following functional form: 

ln(Ridership) = Constant + β1 × Var1 + β2 × Var2…. 

This model is a main effects model with no interaction terms. The estimated models are shown in 
Table 4.3. All models have R2 values above 0.9, indicating that the regression model fits the BPM-V3 data 
points very well, and all of the signs and magnitudes of model coefficients are sensible. For example, a 
negative value on HSR fare indicates that, as HSR fare increases, HSR ridership decreases. Note that for 
revenue this is not always the case since for certain values of HSR fare; the increase in HSR ridership 
offsets the loss of revenue from a decrease in HSR fare. 

Table 4.3 Ridership Regression Model Coefficients 

Constant and Regression Model
Variables 

2029 – VtoV 

Coefficient t-Statistic 

2033 – Phase 1 

Coefficient t-Statistic 

2040 – Phase 1 

Coefficient t-Statistic 
Constant 15.9131 59.07 17.4099 59.98 17.5535 59.63 

HSR Mode Choice Constant – Business 0.2063 45.99 0.1913 40.60 0.1993 41.62 

HSR Mode Choice Constant – Commute 0.0771 9.08 0.0696 7.92 0.0683 7.64 

HSR Mode Choice Constant – 
Recreation/Other 

0.4602 58.77 0.4567 56.37 0.4544 55.20 

Trip Frequency Constant – 
Business/Commute 

0.4109 12.65 0.3767 11.08 0.3826 11.02 

Trip Frequency Constant – 
Recreation/Other 

0.4975 6.81 0.6629 8.69 0.6581 8.51 

Auto Operating Cost 0.0107 6.36 0.0089 4.92 0.0097 6.40 

HSR Fare -0.6945 -24.37 -0.6956 -23.51 -0.7057 -23.46 

HSR Headway -0.2998 -18.18 -0.2257 -15.21 -0.2257 -14.95 

HSR Reliability 1.5447 5.91 0.8038 2.97 0.7777 2.82 

HSR Access/Egress Connecting 
Service – Scenario 1 

-0.0477 -2.42 NA NA NA NA 

HSR Access/Egress Connecting 
Service – Scenario 3 

0.0008 0.08 NA NA NA NA 

Airfare NA NA -0.0286 -0.44 -0.0337 -0.51 

Coefficient on Transit Access-Egress 
Time/Auto Distance Variable 

0.1494 4.05 0.0640 1.68 0.0663 1.71 

Demographic Forecast CEF -0.0437 -2.80 -0.0458 -2.81 -0.0971 -5.85 

Demographic Forecast Moody’s 0.0568 3.62 0.0548 3.32 0.0424 2.53 

Automobile IVT Coefficient NA NA NA NA -0.4191 -5.48 

Extremely Long Access/Egress -0.0233 -2.51 0.0136 1.41 0.0143 1.46 

Model Statistics 

Cambridge Systematics, Inc.
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2029 – VtoV 2033 – Phase 1 2040 – Phase 1 
Constant and Regression Model
Variables Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic 
R2 0.982 0.978 0.978 

Adjusted R2 0.980 0.976 0.976 

The cross-validation results for the ridership GPR regression models are provided in Table 4.4. It is 
important to note that these scores represent a measure of improvement in model fit above and beyond 
the fit achieved from the linear regression model alone, instead of the absolute model fit. The 2029 cross 
validation score is lower than for the 2033 and 2040 forecasts in large part due to the presence of three 
discrete connecting service scenarios in this forecast, and in particular the singly unlikely Scenario 1, for 
which predictions are hampered by the scarcity of data (only 8 BPM-V3 runs are used to represent this 
unlikely scenario). Nevertheless, the GPR still provides a notable improvement in model fit above and 
beyond the linear regression model for this forecast. The second row shows the root mean squared error 
(RMSE) of the cross-validation prediction of annual system ridership (in millions) across all observations 
in each 150 run dataset. As with Table 4.2 for the revenue GPR, Table 4.4 also shows the long-distance 
ridership forecast as well as the RMSE as a percent of the long distance ridership for the 2018 Business 
Plan to provide an order of magnitude comparison of the average error measured by the RMSE. 

Table 4.4		 Ridership Gaussian Process Regression Model Cross Validation 
Results 

2029 – VtoV 2033 – Phase 1 2040 – Phase 1 
GPR Cross Validation Score 0.834 0.986 0.983 

RMSE of Cross Validation Predictions 
(millions of HSR riders) 

0.24 0.16 0.19 

Long Distance HSR Ridership – 2018 
Business Plan Base Runs (millions of 
riders) 

14.4 35.6 39.4 

RMSE as a percent of Base Run Long 
Distance HSR Revenue 

1.7% 0.4% 0.5% 

To generate a final prediction of the ridership for a particular set of risk factor inputs, the ridership arising 
from additional induced and visitor travel risk factors is added to the ridership resulting from the GPR 
meta-model. The ridership arising from the induced and visitor travel risk factors is over and above the 
ridership resulting from HSR travel modeled using the BPM-V3 model and captured as part of the GPR. 

4.5 Revenue Results of the Monte Carlo Simulation 

A Monte Carlo simulation using the regression meta-model was run 100,000 times using different 
combinations of values of the risk variables, with the values being drawn from the assigned risk variable 
distributions. Note that some risk factors include multiple components that are sampled in the 

Cambridge Systematics, Inc.
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Monte Carlo analysis. For example, values are sampled from both the uncertainty component distribution 
and the terminal/wait time component distribution for the HSR Mode Choice Constant risk variable. 
Appendix A details the components of each risk variable, the range of values and distributions for each 
component, and correlation between distributions of risk variables. Setting a positive correlation between 
two risk variable components results in the Monte Carlo simulation having a higher probability of sampling 
from the same point on the distribution (e.g., a 100-percent positive correlation would result in two risk 
variables always being chosen from the same percentile point on the distribution). 

The revenue output from these 100,000 Monte Carlo runs was used to develop the revenue range and 
probability of occurrence, as shown in Table 4.5. Short-distance trips less than 50 miles within the 
Southern California Association of Governments (SCAG) and the Metropolitan Transportation 
Commission (MTC) contribute $13 million in revenue in year 2033 and $14 million in 2040. This short-
distance revenue was added to the year 2033 and year 2040 long-distance revenue for all probability 
levels to obtain total HSR revenue.27 

Table 4.5		 Year 2029 to 2040 HSR Revenue Range and Probability 
of Occurrencea 

Revenue (Millions of June 2017 Dollars) 

Probability 2029 VtoV 2033 PH1 2040 PH1 
Minimum $230 $645 $674 

1% $358 $983 $1,037 

10% $517 $1,409 $1,480 

25% $666 $1,777 $1,872 

Median $887 $2,301 $2,436 

75% $1,167 $2,937 $3,112 

90% $1,451 $3,556 $3,790 

99% $1,961 $4,650 $5,018 

Maximum $2,757 $6,311 $7,082 

Base Run $823 $2,098 $2,344 

a The results are raw model output and do not account for ramp-up. 

The “base run” is the revenue for the year and scenario forecast using the BPM-V3 model with the base 
input variable values. The forecast base run revenue is less than the median revenue estimated using the 
risk analysis for all forecast years. The risk analysis demonstrates that, overall, there is a greater than 
even chance that revenue will be higher than the base run for all forecast scenarios. 

27 Given the small proportion of short-distance trip HSR revenue, variability associated with forecasting short-distance 
HSR trips was deemed low risk in contributing to overall uncertainty of HSR revenue, and thus was not included as 
part of the risk analysis. 

Cambridge Systematics, Inc.
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Figure 4.6, Figure 4.7, and Figure 4.8 plot the cumulative distribution of HSR revenue for years 2029, 
2033, and 2040, respectively. 

Figure 4.6 Year 2029 Cumulative Distribution of High-Speed Rail Revenue (June 
2017 Dollars) 
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Figure 4.7		 Year 2033 Cumulative Distribution of High-Speed Rail Revenue (June 
2017 Dollars) 
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Figure  4.8  Year  2040 Cumulative Distribution  of  High-Speed  Rail  Revenue  (June 
2017 Dollars)  
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4.6 Ridership Results of the Monte Carlo Simulation 

A Monte Carlo simulation using the ridership regression meta-model was applied to the same 100,000 
runs developed for the revenue analysis. The ridership output from these runs was used to develop the 
ridership range and probability of occurrence, as shown in Table 4.6. Short-distance trips less than 
50 miles within SCAG and MTC contribute 0.58 million in ridership in years 2033 and 0.63 million in 2040. 
This short-distance ridership was added to the year 2033 and year 2040 long-distance ridership for all 
probability levels to obtain total HSR ridership.28 

The “base run” is the ridership for the year and scenario forecast using the BPM-V3 model with the base 
input variable values. The forecast base run ridership is less than the median ridership estimated using the 
risk analysis for 2029 and 2033 and higher than the median for 2040. This variation reflects the differential 
impact that some risk factors have for longer or shorter (i.e., higher or lower revenue) trips. 

28 Given the small proportion of short-distance trip HSR ridership, variability associated with forecasting short-
distance HSR trips was deemed low risk in contributing to overall uncertainty of HSR ridership, and thus was not 
included as part of the risk analysis. 

Cambridge Systematics, Inc.
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Table 4.6 Years 2029 to 2040 High-Speed Rail Ridership Range and Probability 
of Occurrencea 

Ridership (Millions) 

Probability 2029 VtoV 2033 Ph1 2040 Ph1 
Minimum 3.3 8.9 9.7 

1% 5.6 14.9 15.6 

10% 8.3 21.6 22.6 

25% 10.8 27.4 28.9 

Median 14.5 36.1 38.0 

75% 19.1 46.7 49.2 

90% 23.9 57.5 60.6 

99% 32.9 76.9 81.8 

Maximum 47.3 111.7 117.6 

Base Run 14.4 36.2 40.0 

a The results are raw model output and do not account for ramp-up. 

Figure 4.9, Figure 4.10, and Figure 4.11 plot the cumulative distribution of HSR ridership for years 2029, 
2033, and 2040, respectively. 

Figure  4.9  Year  2029 Cumulative Distribution  of  High-Speed  Rail  Ridership  
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Figure 4.10 Year 2033 Cumulative Distribution of High-Speed Rail Ridership 
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Figure  4.11  Year  2040 Cumulative Distribution  of  High-Speed  Rail  Ridership  
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4.7 Relative Importance of Risks 

One feature of the risk analysis approach taken here is that the probability distribution of forecasts of 
high-speed rail ridership and revenue result from the underlying uncertainty in several variables that have 
direct impacts on high-speed rail ridership and revenue. Each of those variables contributes to the 

Cambridge Systematics, Inc.
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uncertainty in different ways, which can be quantified by examining the overall distribution of the 
forecasts. There are several methods outlined in the literature for expressing the relative importance of 
risk factors with a GPR model, although there is no well-established and universally accepted “best” 
method for this analysis. 

To provide a measure of the relative importance of the risk factors for the high-speed rail risk analysis, we 
adopt an alternative method called the “Delta Moment-Independent Measure”.29,30 Instead of measuring 
the contribution to variance, the Delta measure calculates the volume of change in the probability density 
function (pdf) that is a result of the change in any particular risk factor. It is called “moment-independent” 
because it can measure not just changes in the mean or variance (i.e., the first and second moments), 
but also changes to the shape of the distribution (e.g., changes in asymmetric tails, referred to as 
skewness). 

The adoption of the Delta measure for risk factor importance analysis also is supported by the detail of 
the Monte Carlo risk analysis. The Delta measure can be computed efficiently from the same 100,000 
Monte Carlo draws used to develop the primary risk analysis result, thus minimizing the additional 
computational effort required to develop this measure. It is also compatible with correlated input factors, 
which represent a significant portion of the relative importance of various factors. The Delta measure is 
computed by calculating the absolute difference between the unconditional distribution of the outcome 
measure (i.e., the overall total distribution) and the distribution conditional on any particular value of an 
individual risk factor. This absolute difference is illustrated by the shaded region in Figure 4.12. In the 
figure, the blue line represents the unconditional probability distribution of the outcome measure (e.g., the 
overall probability of various levels of revenue) and the orange line represents a conditional probability 
distribution (e.g., the probability of various levels of revenue when auto operating costs are set to 27 
cents per mile). The area of the shaded area is multiplied by the probability of observing the particular 
value of the risk factor (e.g., the probability that auto operating costs will be 27 cents per mile), and this 
weighted value is integrated across all possible values of the risk factor. Thus, if the net impact of a risk 
factor is large but only for unlikely values of that risk factor, the overall Delta importance measure can be 
small. 

29 Plischke, E., E. Borgonovo, and C. L. Smith. 2013. “Global sensitivity measures from given data,” European 
Journal of Operational Research 226.3: pages 536 to 550. 

30 Borgonovo, E. 2007. “A new uncertainty importance measure,” Reliability Engineering & System Safety 92.6: 
pages 771 to 784. 
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Figure 4.12 Illustration of Delta Moment-Independent Measure
	

Source: Cambridge Systematics. 

The development of the Delta measure can also be understood graphically by plotting a heat map from 
the Monte Carlo results, where both the risk factor and the outcome measure are represented using 
percentile scales. The cells of the heat map can be defined by a sufficiently dense grid (e.g., 100 by 100) 
overlaid on the data, with each grid cell value determined by the number of Monte Carlo draws falling 
within the cell. The use of the percentile scaling ensures that every column and row of the heat map will 
contain substantially the same number of total observations (subject to possible trivial variations from 
rounding). When the risk factor is unimportant, any value of the risk factor will result in substantially the 
same distribution of outcomes, yielding a homogenous column of heat map cells. If on the other hand, the 
risk factor is important, then some or all of the columns of the heat map will show a nonhomogeneous 
pattern. An example of a relatively important, moderately important, and comparatively less important risk 
factor (respectively, the HSR constant for business travel, HSR headway, and the extremely long access/ 
egress penalty) is shown in Figure 4.13. The magnitude of the Delta measure can be numerically 
approximated from the heat map by taking the total deviation of all heat map cells from the average 
per-cell value. 
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Figure 4.13 Three Illustrative Heat Maps from the 2029 SV to CV Scenario
	

This graphical approach also highlights one feature of the Delta measure: even for a spurious risk factor 
(i.e., something with no impact on the outcome whatsoever), the presence of simulation noise will result in 
a small, but nonzero, estimated Delta value. Graphically, this appears as a heat map that appears as 
random noise, but not as a perfectly homogenous surface. 

Delta measures for various individual risk factors can be compared against each other to gain insight into 
the relative importance of each risk factor, but in the presence of correlated risk factors, the Delta 
measures do not neatly partition the total importance. This is because risk factors can impact outcomes 
both directly and indirectly, as any particular risk factor realization can be associated with a change in the 
marginal likelihood of other risk factor values. For example, the alternative specific constants for business, 
commute, and recreation/other are all positively correlated. Although the overall fraction of ridership by 
commuters is relatively small, high commute constants tend to happen alongside high business and 
recreation/other constants, which both directly trigger much larger shifts in ridership than the direct effect 
of the commute constant on commute ridership. Using this approach, we are not able to represent the 
relative impact of individual risks as a percentage of the total impact. 

The Delta measure of relative importance of each risk variable component is shown in Table 4.7. While 
the values in the table are not percentages, they can be compared against each other to consider relative 
importance, with larger values indicating more important factors, and smaller values indicating less 
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important factors. The high-speed rail constants’ variation is the most important factor in determining the 
revenue distribution. This results both from the high level of uncertainty on these risk values (with a very 
wide distribution of possible values), as well as the large sensitivity of high-speed rail revenue and 
ridership to these constants. There remains a significant amount of uncertainty associated with how 
travelers will view high-speed rail, because there is no way to observe and collect data related to it until 
high-speed rail opens. After the constants, the next most important risk factor is the level of visitor travel, 
which is tied both to the overall uncertainty about how travelers will view high-speed rail, as well as a high 
degree of uncertainty over the overall number of visitors to California in the future. Other risk factors, such 
as the HSR service frequency (headways), have a small importance in the risk analysis, in part, because 
we are able to forecast controllable factors with a higher level of confidence. 
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Table 4.7 Delta Measure of Relative Importance for Revenue Risk Factors
	

Risk Variables 2029 – VtoV 2033 – Phase 1 2040 – Phase 1 
HSR Constant – Business 0.3901 0.3675 0.3693 

HSR Constant – Commute 0.2298 0.2259 0.2238 

HSR Constant – Recreation/Other 0.4295 0.4277 0.4137 

Terminal and Wait Time 0.0416 0.0383 0.0394 

Trip Frequency Constant – Business/ 
Commute 

0.0385 0.0405 0.0410 

Trip Frequency Constant – Recreation/ 
Other 

0.0309 0.0344 0.0341 

Trip Frequency – Economic Cycle 0.0338 0.0325 0.0340 

HSR Reliability 0.0214 0.0204 0.0182 

HSR Headway 0.0517 0.0562 0.0558 

HSR Fares 0.0255 0.0329 0.0354 

Airfares NA 0.0191 0.0183 

Exceptionally Long Access/Egress 0.0179 0.0169 0.0170 

HSR Access/Egress by Transit Variable 0.0190 0.0173 0.0184 

Demographic Forecast CEF 0.0258 0.0338 0.0430 

Demographic Forecast Moody’s 0.0255 0.0330 0.0418 

Automated Vehicle Market Penetration NA NA 0.0173 

Automated Vehicle Shift in Disutility of 
Travel Time 

NA NA 0.0164 

Automated Vehicle Fuel Economy NA NA 0.0177 

Shared Vehicle Market Penetration NA NA 0.0194 

Shared Vehicle Operating Cost NA NA 0.0250 

Standard Automobile Operating Cost 0.0242 0.0215 0.0288 

HSR Access/Egress Connecting 
Service – Scenario 1 

0.0227 NA NA 

HSR Access/Egress Connecting 
Service – Scenario 3 

0.0226 NA NA 

Induced Travel Ratio 0.0201 0.0188 0.0206 

Visitor Ridership 0.1799 0.1836 0.1833 
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Appendix A.		 Risk Variable Component Specification 
for Monte Carlo Simulation 

Table A.1 lists the risk factors considered for the risk analysis. Table A.2 details the components of each 
risk variable used to specify the risk factors, the range of values and distributions for each component, 
and correlation between distributions of risk variables. Some risk factors include multiple components that 
are sampled in the Monte Carlo analysis. For example, values are sampled from both the error 
component distribution and the terminal/wait time component distribution for the High-Speed Rail (HSR) 
Mode Choice Constant risk variable. The sampled values are combined, as appropriate, prior to inputting 
the value into the regression model used for the Monte Carlo simulation. Setting a positive correlation 
between two risk variable components results in the Monte Carlo simulation having a higher probability of 
sampling from the same point on the distribution (e.g., a 100-percent positive correlation would result in 
two risk variables always being chosen from the same percentile point on the distribution). 
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Table A.1 Risk Factors Considered for Risk Analysis
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A-2 

Risk Factor 

Risk Factor 
in 2016 Risk 
Analysis? Comments 

HSR Main Mode Constants Yes • Main contributor to 2016 HSR revenue variance 

Trip Frequency Constants Yes • Second largest contributor to 2016 HSR revenue variance 

Total Population, Households, 
Employment (both statewide total and 
distribution) 

Yes • 
• 
• 

Almost 1:1 relationship of changes in households (accessible to HSR) to HSR ridership 
Uncertainty introduced by Federal changes regarding immigration policy 
Uncertainty regarding average household size changes 

Auto Operating Cost Yes • Potentially more uncertainty than in 2016 regarding gas costs, CAFE standards, Cap & 
Trade, plug-in electric vehicles 

Airfares Yes • Air travel is a direct competitor for HSR travel and there is uncertainty regarding how 
airlines will respond to HSR 

Impacts of Automated & Shared Vehicles Yes • Re-evaluate impacts of automated & shared vehicles in 2029 & 2033 as well as 2040 
•		 Incorporated uncertainty represented in 2016 by auto in-vehicle travel times in this 

factor 

Coefficient on Transit Access-Egress 
Time/Auto Distance Variable 

Yes • Impact on travel with long access times outside ranges presented or observed in model 
estimation data 

HSR Service Frequency Yes • Large service related contributor to 2016 HSR revenue variance 

HSR Fares		 Yes • Contribution to 2016 HSR revenue variance was mixed 
•		 Possible improved capture of non-linearities using GPR 
•		 Important to understand risk levels of factors the Authority or its operator can control 

HSR Connecting Service Via HSR Bus Yes • Response to HSR bus connecting service is uncertain but important for Silicon Valley to 
San Joaquin Valley scenario 

HSR Reliability No • Other HSR systems show very high reliability, however, some uncertainty may be 
introduced by operations on Caltrain tracks in Bay Area 

Induced demand No • Model forecasts some induced travel, but low in comparison to some international 
estimates 

Visitor travel		 No • Visitor travel is not modeled using BPM-V3 
•		 International experience suggests this will be a contribution to ridership and revenue 



 

 

 
 

 

 
 

 

       

         
 

  
 

        

  

    
 

 
  

 

          
 

 
  

  

 
  
 

        
 

    
 

 
  

 

        
 

 
  

  

 
  

 

        
 

    
 

 
  

 

          
 

 
  
  

 
  

 

        
 

 
 

  
 

Table A.2 Risk Variable Distributions Used in Monte Carlo Analyses 

Risk Variable Components Years Minimum Most Likely Maximum Distribution Notes 
HSR Mode Choice 
Constant – 
Business 

Error Component All -2.335 0.0 2.335 PERT – 
Standard 
(Shape = 4) 

Unit = Offset from calibrated 
coefficient. 
50% Correlation with Commute 
& Recreation/Other HSR Error 
Components. 

Terminal/Wait Time All -0.3264 0.0 0.1632 Triangular Unit = Offset from calibrated 
coefficient. 
100% Correlation with 
Commute & Recreation/Other 
Term./Wait Times. 

HSR Mode Choice 
Constant – 
Commute 

Error Component All -1.222 0.0 1.222 PERT – 
Standard 

Unit = Offset from calibrated 
coefficient. 
50% Correlation with Business 
& Recreation/Other HSR Error 
Components. 

Terminal/Wait Time All -0.3264 0.0 0.1632 Triangular Unit = Offset from calibrated 
coefficient. 
100% Correlation with 
Business & Recreation/Other 
Term./Wait Times. 

HSR Mode Choice 
Constant – 
Recreation/Other 

Error Component All -1.354 0.0 1.354 PERT – 
Standard 

Unit = Offset from calibrated 
coefficient. 
50% Correlation with Business 
& Commute HSR Error 
Components. 

Terminal/Wait Time All -0.1388 0.0 0.0694 Triangular Unit = Offset from calibrated 
coefficient. 
100% Correlation with 
Business & Commute 
Term./Wait Times. 

Trip Frequency 
Constant – 
Business/Commute 

Error Component All -0.275 0.0 0.275 PERT – 
Standard 

Unit = Offset from calibrated 
coefficient. 
50% Correlation with 
Recreation/Other Error 
Components. 
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Risk Variable Components Years Minimum Most Likely Maximum Distribution Notes 
Economic 
Component 

2029 
2033 

-0.176 
-0.176 

0.0 
0.0 

0.173 
0.169 

Triangular Unit = Offset from calibrated 
coefficient. 

2040 -0.177 0.0 0.161 100% Correlation with 
Recreation/Other Economic 
Component. 

Trip Frequency 
Constant – 

Error Component All -0.132 0.0 0.132 PERT – 
Standard 

Unit = Offset from calibrated 
coefficient. 

Recreation/Other 50% Correlation with 
Business/Commute Error 
Components. 

Economic 
Component1 

2029 
2033 
2040 

-0.063 
-0.064 
-0.067 

0.0 
0.0 
0.0 

0.066 
0.065 
0.062 

Triangular 100% Correlation with 
Business/Commute Economic 
Component. 

Auto Operating 
Costs 

Combined 
Components 

2029 
2033 
2040 

0.17 
0.17 
0.17 

0.23 
0.23 
0.23 

0.35 
0.34 
0.33 

PERT – 
Shape=5 
2040 n/a 

Unit = 2017 dollar per mile. 
Full Model & Regression Model 
use 2005 dollar, rather than 
2017 dollar. Conversion at 
following rate 202.6 / 262.286 
based on CPI. 
2040 values used in Full Model 
Runs, but not in Monte Carlo. 

Auto Operating 
Costs Impacts of 
Autonomous and 
Shared-Use 
Vehicles 

Owned 
Nonautonomous 
vehicle auto 
operating cost 

Owned 
Autonomous 
Vehicle Market 
Penetration 

2040 

2040 

0.17 

0.10 

0.23 

0.35 

0.35 

0.75 

PERT – 
Shape=5 

Triangular 

Unit = 2017 dollar per mile. 
Used in Monte Carlo, but not 
used in Full Model Runs 

Unit = Decimal percent of 
owned AVs used for long-
distance trips. 
Used in Monte Carlo, but not 
used in Full Model Runs. 

AV Fuel Economy 
improvements 

2040 0.10 n/a 0.50 Uniform Unit = Decimal percent fuel 
economy improvements from 
base. 
Used in Monte Carlo but not 
used in Full Model Runs. 
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Risk Variable Components Years Minimum Most Likely Maximum Distribution Notes 
Shared-use vehicle 
market share 

2040 0.02 0.05 0.20 Triangular Unit = Decimal percent of 
shared-used vehicles used for 
long-distance trips. 
Used in Monte Carlo but not 
used in Full Model Runs. 

Shared-use vehicle 
auto operating cost 

2040 0.18 n/a 0.85 Uniform Unit = 2017 dollar per mile. 
Used in Monte Carlo, but not 
used in Full Model Runs. 

HSR Fares N/A All 0.74 1.0 1.42 Triangular Unit = Factor from Base. 

HSR Headway N/A 2029 
2033 & 
2040 

0.29 
0.65 

1.0 
1.0 

1.58 
2.25 

PERT – 
Standard 

Unit = Factor from Base/Most 
Likely Value. 

HSR Connecting 
Service 

N/A 2029 Scenario 1 – 
5% 

Scenario 2 – 
40% 

Scenario 3 – 
55% 

Multinomial Unit = 1 if Scenario is chosen, 
0 otherwise. 

Coefficient on 
Transit Access-
Egress Time/Auto 
Distance Variable 

Business/Commute 
Coefficient 

2029 -2.0 -1.215 -1.215 PERT – 
Standard 

Unit = Coefficient. 
Used in Full Model Run but not 
used in regression. 
100% Correlation with 
Recreation/Other coefficient & 
Threshold parameter. 

Recreation/Other 
Coefficient 

2029 -1.3 -0.88 -0.88 PERT – 
Standard 

Unit = Coefficient. 
Used in Full Model Run, but 
not used in regression. 
100% Correlation with 
Business/Commute coefficient 
& Threshold parameter. 

Threshold 
Parameter 

2029 0.1 0.2 0.2 PERT – 
Standard 

Unit = Threshold value. 
Used in Full Model Run but not 
used in regression. 
100% Correlation with 
Business/Commute coefficient 
& Recreation/Other coefficient. 
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Risk Variable Components Years Minimum Most Likely Maximum Distribution Notes 
Index Variable 2029 -0.1 0.0 0.0 PERT – 

Standard 
Unit = Index variable. 
Not used in Full Model Runs, 
but used in regression. 
Middle value set to 0.05 for Full 
Model Runs. 

Airfares 2033 and 
2040 

1.0 1.15 1.31 Triangular Unit = Factor from Base. 

Number and 
Distribution of 
Households 
throughout the 
State 

N/A All CEF Blended Moody’s Triangular Unit = Interpolate from Base. 

HSR Reliability N/A All 0.90 0.99 0.997 PERT – 
Standard 

Unit = Decimal percent. 

Auto In-Vehicle 
Time Coefficient 

Owned 
Autonomous 
Vehicle Market 
Penetration 

2040 0.10 0.35 0.75 Triangular Unit = Decimal percent of 
owned AVs used for long-
distance trips. 
Used in Monte Carlo but not 
used in Full Model Runs. 

IVT Coefficient – 
Alone Travel 

2040 0.50 0.75 1.0 Triangular Unit = Factor of Auto IVT 
applied to AV market only for 
alone travel (applied for both 
auto main mode and auto 
access/egress). 

IVT Coefficient – 
Group Travel 

2040 0.80 0.90 1.0 Triangular Unit = Factor of Auto IVT 
applied to AV market only for 
group travel (applied for both 
auto main mode and auto 
access/egress). 
Perfect correlation between 
alone and group travel IVT 
coefficients. 

Exceptionally Long 
Access and Egress 
(Percent increase in 
disutility) 

All 150% n/a 0% Uniform 
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Risk Variable Components Years Minimum Most Likely Maximum Distribution Notes 
Visitor Travel Visitor Travel HSR 

Trips 
2029 

2033 

2040 

0.48 

1.69 

1.87 

n/a 

n/a 

n/a 

1.03 

3.65 

4.03 

Uniform Unit = HSR Trips (millions). 
50% positive correlation 
between visitor travel high-
speed rail ridership and total 
California resident high-speed 
rail ridership. 

Induced HSR 
Ridership 

Percent of 
additional ridership 

All 0 7.5 15 Triangular Unit = Percent of additional 
ridership. 
50% negative correlation with 
the trip frequency constant. 
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Appendix B. High-Speed Rail Constants 
The high-speed rail (HSR) constant for each of the four trip purposes (i.e., business, commute, recreation, 
and other) is composed of two components: 1) unexplained variation, and 2) terminal and wait time. The 
unexplained variation component represents the desirability to choose HSR that is not captured directly 
by the system variables included in the model. Terminal time is the out-of-vehicle time spent traveling 
from the point of departure from the access mode to the train platform. Wait time is the out-of-vehicle time 
spent waiting on the platform for the train to arrive and the time spent waiting for the train to leave the 
platform once boarded. The risks associated with each of the components are different and should be 
specified separately for the Monte Carlo experiments, as discussed in the next sections. 

For full model risk analysis runs, terminal and wait times are included with the unexplained variation within 
the HSR constant.31 For Monte Carlo risk analysis, each component of the HSR constant is considered as 
a separate risk variable with completely independent distributions. The former allows for estimation of a 
single regression model parameter, and does not require an additional risk variable in the experimental 
design framework. The latter allows for an understanding of the terminal/wait time’s effect on ridership 
and revenue uncertainty independent from the HSR constant’s effect on ridership and revenue 
uncertainty. 

B.1 Unexplained Variation 

An important part of any mode choice model is a modal constant that explains factors that are not 
quantifiable by the stated-preference (SP) and revealed-preference (RP) surveys. When dealing with 
existing modes, such as auto, conventional rail (CVR), and air, we can calibrate this constant by 
comparing the model outcomes to observed behavior. With a new mode like HSR in the California/U.S., 
this is impossible, and thus there is uncertainty in the asserted constant. 

The asserted HSR constant is the average of the estimated constant value from two distinct approaches. 
The first approach considered offsets from air and CVR constants derived from 2013 estimated SP 
constants. The second approach averaged the calibrated air and CVR constants used in model 
application. Details of the derivation of the HSR constant are documented in the California High-Speed 
Rail Ridership and Revenue Model Business Plan Model-Version 3 Model Documentation. Both 
approaches were reasonable approaches to arrive at an HSR constant, but this analysis takes the 
average of these values. Since each approach is reasonable on its own terms, the values derived from 
each approach must fall within the uncertainty range considered in the risk analysis. 

In order to better understand the uncertainty associated with the HSR constant, additional analysis of the 
2013 RP/SP survey data was undertaken by performing additional mode choice model estimation using 
additional variables that were not included in the Business Plan Model – Version 3 (BPM-V3). This 
additional analysis was separate from the procedure described above to assert the HSR constant. The 

31 The decision to bundle the terminal and wait times with the unexplained variation in the constants was made when 
the BPM-V3 was developed since the terminal and wait times were considered to be mode specific. The model 
implementation code could be modified to unbundle the terminal and wait times from the constant without impacting 
the underlying BPM-V3. This approach, however, was unnecessary for the risk analysis; the unbundling could 
effectively be accomplished through the method used to implement the risk analysis. 
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variables included demographic characteristics, trip characteristics, and attitudinal questions, as shown in 
Table B.1. 

Table B.1		 Additional Variables Considered in Analysis of High-Speed Rail 
Constant 

Demographic Characteristics Trip Characteristics Attitudinal Questions 
• Gender • Car not available for trip • Respondent’s stated likelihood of ever using HSR 
• Age • Car needed at service in the future. 

• Worker Status destination • Respondent’s perceived economic v

• Highest education level • Duration of stay the State of California. 
ntal value of 

alue of HSR to 

achieved • Respondent’s perceived environme
HSR to the State of California. 

• Schedule flexibility 
•	 Respondent’s support/opposition level to HSR. 
•	 Respondent’s familiarity with conventional Amtrak, 

Acela services in the Northeast, and HSR in foreign 
countries. 

Using the best model with these new variables, the HSR constant was recalibrated using the constant 
offset method, assuming the same calibrated CVR and air constants.32 The resulting HSR constants 
under this new model were nearly identical to those of the original model, suggesting that even after 
controlling for all these additional factors, the constants we would assert for the HSR mode would have 
been about the same in relation to the calibrated air and CVR constants. While the estimated coefficients 
for several of the variables in Table B.1 were found to be highly statistically significant with expected 
signs and appropriate magnitudes on their own, these coefficients do not say much about the size or 
magnitude of the HSR constant, or its relation with CVR or air constants. If they had explained a portion 
of the unexplained variation included in the HSR constant, the resulting HSR constant asserted using the 
offset method should have been different from the HSR constant asserted using the offset method for the 
BPM-V3. 

Given that this additional model estimation did not provide additional insight into the uncertainty of the 
HSR constant, we had no basis to narrow the range in uncertainty from the range assumed in previous 
risk analyses (as long as the BPM-V3 is used for forecasting). In previous risk analyses, the CVR 
constant was assumed to represent an absolute worst case lower bound for the uncertainty range for the 
HSR constant. This was reasonable, since none of the unobserved characteristics for HSR should be less 
attractive than CVR to travelers. 

The shape of the HSR constant is assumed to be symmetric around the base case value. The asserted 
baseline constants come from averaging two reasonable approaches, as outlined above. The asserted 
constants for both approaches are equidistant from the asserted value for the BPM-V3; and by extension, 
should have the same likelihood of occurrence in the constant distribution. Thus, due to the symmetry 

32 These constants would change under a different model specification, but this allowed for direct comparison of the 
resulting HSR constant to those of the original model. 
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assumption, the absolute minimum bound of the CVR constant also determines the absolute maximum 
bound. 

Each trip purpose (i.e., business, commute, recreation/other) is treated individually as separate risk 
factors since the difference between CVR and HSR base constants is different for each purpose, and 
thus, the CVR lower bound is different for each purpose. In addition, some parts of the uncertainty 
captured in the constants are likely to be totally correlated amongst trip purposes (i.e., 100 percent 
correlation), while others would be unrelated between purposes (i.e., 0 percent correlation). A 50-percent 
correlation between the HSR constant trip purposes was assumed to capture the judgment that a portion 
of the constants would be correlated, but not necessarily every aspect of them. 

For the Monte Carlo simulation, a PERT distribution is specified rather than a triangular distribution, 
because the CVR constant represents an absolute minimum possible value for the HSR constant, 
essentially a tail event. Since the triangular distribution does not have tails, it would overstate the 
likelihood of observing a very unlikely tail event. 

B.2 Terminal and Wait Time 

B.2.1 Terminal Time 

Terminal time is the out-of-vehicle time spent traveling from the point of departure from the access mode 
to the train platform. It currently is assumed that terminal times for CVR and air are 3 and 22 minutes, 
respectively; and for HSR, 10 minutes is assumed. A lower bound based on the CVR value is considered, 
but given that HSR stations will be larger than many CVR stations, a lower bound for the risk analysis 
simulations of 5 minutes is more appropriate. 

The upper bound on terminal time is based on the air terminal time. An upper bound of 22 minutes is 
used for HSR terminal time, which is identical to the terminal time assumed at airports. This conservative 
upper bound assumes that the time it takes to traverse an HSR station is similar to airports, and that HSR 
travelers will need to undergo security similar to current Transportation Security Administration (TSA) 
security at airports. 

B.2.2 Wait Time 

Wait time is the out-of-vehicle time spent waiting on the platform for the train to arrive and the time spent 
waiting for the train to leave the platform once boarded. Wait times are often related to service headways, 
except when headways grow so long that travelers coordinate their arrivals to coincide with train 
departure. Research supports this assumed behavior. When transit headways are less than 11 minutes, 
travelers arrive at the stop randomly because they are not attempting to coordinate their arrival with the 
bus departure time. However, when bus headways exceed 38 minutes, travelers carefully arrive when the 
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bus is scheduled to depart.33 Because HSR trains will arrive infrequently, it is reasonable to assume that 
travelers will coordinate their arrivals with the HSR schedule. 

This coordination guides the value for the upper bound of the wait time component. For trains with 
60-minute headways, the mean wait time of travelers who do not coordinate their arrival at the station 
with the train will be 30 minutes. However, given the evidence that travelers do not arrive randomly, it is 
reasonable to assume that the average wait time will be less than 30 minutes in such a case. 

If it is assumed that with 30-minute headways, 25 percent of travelers have random arrivals with 
15-minute average waits, 50 percent of travelers have coordinated arrivals with 10-minute average waits, 
and 25 percent of travelers have coordinated arrivals with 5-minute average waits. The overall average 
wait time is 10 minutes. Thus, 10 minutes is used as a lower bound on the distribution for risk analysis. 

The base wait and terminal times for HSR are set to 15 and 10 minutes, respectively. These were the 
terminal and wait times that were stated in both the 2005 and 2012/2013 RP/SP survey. The wait time 
and terminal time risk variables for each trip purpose are 100 percent correlated with each other, since 
factors that contribute to shorter or longer terminal and wait times would not differ by trip purpose. The 
risk variable has a triangular distribution since the ranges do not reflect extreme or highly unlikely events. 

33 Fan, W., and R. Machemehl. 2009. Do Transit Users Just Wait for Buses or Wait with Strategies? Some Numerical 
Results That Transit Planners Should See, Transportation Research Record: Journal of the Transportation 
Research Board, Issue 2111, pages 169-176. 
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Appendix C. Trip Frequency Constants 
The trip frequency constants include the unexplained variation in the propensity of households to make 
long-distance trips within California. Within the risk analysis model, variation in the trip frequency 
constants is used to reflect the effect of the state of the economy on the proclivity of households to take 
high-speed rail (HSR). Instead of including distributions of household and employment levels directly as 
risk variables in the risk analysis model to account for changes in the state of the economy, risks 
associated with the state of the economy are taken into account within the trip frequency constant risk 
variable. The risks associated with each of the components are different and should be specified 
separately for the Monte Carlo experiments, as discussed in the next sections. 

C.1 Unexplained Variation 

The trip frequency model was calibrated to 2010 conditions and applied using forecast year 
socioeconomic data and networks. The changes in the demographic composition and the networks in the 
modeled forecast years result in an increase in annual long-distance trip rates compared to the year 2010 
trip rates. This increase in annual long-distance trip rates is consistent with findings from the 1995 
American Traveler Survey and the 2001 National Household Travel Survey (NHTS), which found a 21-
percent increase in annual round trips per household over the six-year period from 10.15 annual trips per 
household to 12.32 annual trips per household.34 This occurred even though the economic conditions in 
2001 were not as good as in 1995 due to the “dot-com” bust. In addition, since some surveys were 
collected after 9/11, the 2001 NHTS trip rates may have been affected. 

Annual long-distance trip rates appear to be relatively independent of disruptions caused by economic 
conditions, changes in technology, and changes in traveler perceptions and behavior. Information and 
communication technologies have been found to be a complement, and even be an incentive for, 
business trips.35 During recessions and hard economic times, research has found that households choose 
to make more leisure trips closer to home for shorter periods of time, rather than taking longer trips that 
involve more days away from home.36 As the baby boomers continue to move into retirement age, leisure 
travel also may increase due to fewer family obligations, higher incomes compared to their younger 
peers, and fewer necessary expenditures.37 Research suggests that, if anything, long-distance travel may 
increase with changing technologies and demographics. 

34 NCHRP Report 735, Long-Distance and Rural Travel Transferable Parameters for Statewide Travel Forecasting 
Models, Transportation Research Board, 2012, page 51. 

35 Aguilera, A. Business Travel and Mobile Workers, Transportation Research Part A: Policy and Practice, Volume 42, 
Issue 8, October 2008, pages 1109 to 1116. 

Mokhtarian, P. If Telecommunication is such a good substitute for travel, why does congestion continue to get 
worse? Transportation Letters, Volume 1, Issue 1, January 2009, pages 1 to 17. 

36 Lamonda, J., and C. Bhat. 2011. A study of visitors’ leisure travel behavior in the northwest territories of Canada. 
Transportation Letters, Volume 3, Issue 1, January 2011, pages 1 to 19. 

37 Lamonda, J., C. Bhat, and D. Hensher. 2008. An annual time use model for domestic vacation travel. Journal of 
Choice Modeling, Volume 1, Issue 1, pages 70 to 97. 
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Since changes in economic conditions, technologies, and traveler perceptions and behaviors are not 
hypothesized as a significant risk to annual long-distance trip rates, the trip frequency constant risk factor 
range is based on the range seen in forecasted annual long-distance trip rates produced by the model. 
The most likely value for each forecast year is the calibrated constant. The minimum value of the trip 
frequency constants is specified, such that for year 2040, the trip frequency constants produce average 
trip rates equal to the 2010 rates by trip purpose. The maximum value of the trip frequency constant is 
specified to mirror the deviations from the calibrated constants for the minimum values (i.e., symmetry of 
the constant offsets is assumed). 

For each trip purpose (i.e., business/commute, recreation/other), some parts of the uncertainty captured 
in the constants are considered likely to be correlated amongst trip purposes (i.e., 100 percent 
correlation), while others would be unrelated between purposes (i.e., 0 percent correlation). A 50-percent 
correlation between the trip frequency constant trip purposes was assumed to capture that a portion of 
the constants’ uncertainty would be correlated, but not necessarily every aspect of it. 

For the Monte Carlo simulation, a PERT is specified rather than a triangular distribution, because the 
minimum and maximum values represent unlikely events. Since the triangular distribution does not have 
tails, it would overstate the likelihood of observing a very unlikely tail event. 

Table C.1 shows the approximate results in terms of annual long-distance round trips per capita resulting 
from the specification of the constant ranges to account for unexplained variation. Note that symmetry of 
the constant offsets does not produce symmetry of the implied trip rates. This is due to the trip frequency 
choice model being specified as a logit model with choices of no long-distance trip, one long-distance trip 
traveling alone, or one long-distance trip traveling in a group on a given day. Since the base shares for 
each of these choices are very low (e.g., about 0.2 percent), the model is more sensitive to the constants 
on the high end than the low end. 

Table C.1		 Unexplained Variation of Trip Frequency Constants – Implied Annual 
Long-Distance Round Trips per Capita 

Implied Annual Implied Annual Implied Annual Long-Distance 
Long-Distance Round Trips Long-Distance Round Trips Round Trips per Capita for 

Purpose per Capita for 2029 per Capita for 2033 2040 

Most 	 Most Most 
Minimum Likely Maximum Minimum Likely Maximum Minimum Likely Maximum 

Business/Commute 1.68 2.21 2.90 1.74 2.28 2.99 1.87 2.46 3.23 

Recreation/Other 5.14 5.86 6.67 5.22 5.95 6.78 5.50 6.27 7.14 

Total		 6.82 8.07 9.57 6.96 8.23 9.77 7.37 8.73 10.37 

C.2 Economic Cycle 

Economic cycles potentially impact several different variables in the model, including the number of 
workers, household income levels, and overall trip making. However, incorporating each of these risk 
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factors separately is infeasible. These impacts are interrelated and can be accounted for jointly. 
Sensitivity tests have shown that the economic-cycle variations can be reasonably accounted for by 
changes in trip frequencies. Thus, the effect of economic cycles on HSR ridership and revenue is 
accounted for as a separate risk component in the trip frequency constants. 

In order to determine the appropriate range in the trip frequency constant, changes in employment and 
income need to be translated into changes in the trip frequency constants. The primary driver for long-
distance trip-making in the BPM-V3 model is the number of households within the State. Households are 
stratified into 99 different groups based on 4 household size groups, 3 auto ownership groups, 3 number 
of workers groups, and 3 income groups. The 4 x 3 x 3 x 3 groups result in 108 strata; 9 of which are 
illogical (i.e., 2 or more worker, 1 person households for the 9 groups defined by auto ownership and 
income). Total trips are based on the modeled trip frequency and the numbers of households in the State. 

Employment is the metric used to define the economic cycles for the State. Employment has a secondary 
impact on trip frequency and a more direct impact on destination choice. However, the employment levels 
also can be used to more directly impact the total numbers of trips through relationships with households 
by numbers of workers and households by income group. For a given forecast of households, the 
numbers of 0, 1, and 2+ worker households should vary so that total workers in the State track the total 
employment. Likewise, in a recession, it should be expected that the number of low-income households 
should increase at the expense of middle- and high-income households and, likewise, that the number of 
middle-income households might increase at the expense of high-income households. 

Suggested low and high employment levels representing the economic cycles were based on historic 
observations through 2014. The Great recession produced a -2.8-percent Compound Annual Growth 
Rate (CAGR) for employment in California between 2007 and 2010. Thus, for the low economic growth 
scenario, annual declines of 3.0 percent per year for the three years preceding the forecast year were 
assumed, with those declines being applied to the new “Low Scenario” statewide control total. The period 
from 1994 to 2000 was the high-water period for job growth in California with a 3.0-percent CAGR for five 
years. Thus, for the high economic growth scenarios, annual increases of 3.0 percent per year for the five 
years preceding the forecast year were assumed, with the increase applied to the new “High Scenario” 
statewide control total. 

It was assumed that the low employment forecast would result in a commensurate decrease in the 
number of household workers. This was accomplished through increasing in the number of 0 and 
1 worker households, and decreasing 2+ worker households. The above changes could result from some 
households moving from 2+ worker households to 1 worker households, and 1 worker households 
moving to 0 worker households to reflect the increasing unemployment. It was assumed that the increase 
in 0 worker households would result in an increase in low-income households and a commensurate 
decrease in high-income households. The changes could result from some households moving from high-
income households to middle-income households, and middle-income households moving to low-income 
households to reflect the increasing unemployment or underemployment. 

Likewise, an assumption was made that the high employment forecasts would result in a commensurate 
increase in the number of household workers. This was accomplished through decreases in the number 
of 0 worker households and 1 worker households, and increases in 2+ worker households to maintain the 
statewide control total of households. Low-income households were assumed to decrease and middle-
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income households were assumed to increase. Table C.2 shows examples of the resulting joint 
distributions of households by number of workers and income group and the resulting factors for the 
base, low, and high employment scenarios. 

For the 2029 and 2033 forecast years for the 2018 Business Plan, the economic cycle offsets were 
estimated by interpolating the implied economic cycle offsets for 2025 and 2040 (after adjusting for 
updated socioeconomic forecasts). The BPM-V3 model runs needed to generate the information 
necessary for the analysis were originally made for 2025 and 2040 in order to bracket potential forecast 
years. Since the same assumptions have been used for the minimum and maximum growth scenarios for 
each forecast year, this interpolation approach was more direct and produced results consistent with 
those that would have been obtained had the minimum and maximum scenario forecasts been performed 
for 2029 and 2033. Table C.3 shows the ranges of offsets for and the implied annual round trip per capita 
trip rates for 2029, 2033, and 2040. 

Table C.2		 Workers per Household by Income Group for Most Likely, Minimum, 
and Maximum Changes in Employment for 2040 

Income Group 
Workers/

Household Low Middle High Total
	
Base Scenario
	

0 17% 9% 6% 32%
	

1 9% 12% 12% 33%
	

2+ 3% 9% 23% 35%
	

Total 29% 30% 41% 100%
	

Minimum Economic Growth Scenario
	

0 19% 11% 6% 36%
	

1 10% 14% 12% 36%
	

2+ 2% 8% 18% 28%
	

Total 31% 33% 36% 100%
	

Maximum Economic Growth Scenario
	

0 14% 8% 6% 28%
	

1 7% 11% 13% 31%
	

2+ 2% 10% 29% 41%
	

Total 23% 29% 48% 100%
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Table C.3 Minimum, Most Likely, and Maximum Economic-Cycle Trip 
Frequency Constant Offsets and Implied Trip Rates 

Implied Annual Per Capita Round
Constant Offsets Trip Rates 

Model Year Purpose Minimum Most Likely Maximum Minimum Most Likely Maximum 
Business/Commute -0.17607 0 0.17275 1.85 2.21 2.63 

2029		 Recreation/Other -0.06278 0 0.06613 5.50 5.86 6.26 
Total – – – 7.35 8.07 8.89 
Business/Commute -0.17633 0 0.16865 1.91 2.28 2.70 

2033		 Recreation/Other -0.06420 0 0.06479 5.58 5.95 6.35 
Total – – – 7.49 8.23 9.05 
Business/Commute -0.17680 0 0.16148 2.06 2.46 2.89 

2040		 Recreation/Other -0.06670 0 0.06243 5.87 6.27 6.67 
Total – – – 7.93 8.73 9.56 

C.3 Trip Frequency Constant Ranges 

For full model risk analysis runs, economic-cycle effects are included with the unexplained variation in the 
range specified for the trip frequency constant. The range of constant offsets for the uncertainty analysis 
is directly related to the calibrated constants. The range of constant offsets for impacts of economic 
cycles provides proxies for the actual economic-cycle risk variable being considered. This approach 
provides a useful method for specifying a continuous range of outcomes rather than developing multiple 
input socioeconomic datasets. The offsets must be combined to represent the full range of possible 
outcomes for the development of the risk analysis regression equations. The constant offsets for the 
Unexplained Variation and Economic Cycle are added, and the implied range of trip rates was estimated, 
as shown in Table C.4. 

For the Monte Carlo risk analysis, each component of the trip frequency constant is considered as a 
separate risk variable with completely independent distributions (i.e., 0 percent correlation). The 
unexplained variation uses a PERT distribution, while the economic cycle component uses a triangular 
distribution. A 50-percent correlation is assumed between the business/commute and recreation/other 
risk components for unexplained variation, since there is likely to be some relationship (though not perfect 
correlation) in changes to overall trip-making for different purposes. Perfect correlation is assumed 
between economic-cycle risk components for business/commute and recreation/other purposes. 
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Table C.4 Range of Trip Frequency Constant Offsets and Implied Trip Rates 
for Full Model Runs 

Model 
Year Purpose 

Business/Commute 

Composite Trip Frequency Model
Constant Offsets 

Minimum Most Likely Maximum 
-0.45059 0 0.44728 

Implied Trip Rates Based on
Composite Constant Offsets 

Minimum Most Likely Maximum 
1.41 2.21 3.44 

2029 Recreation/Other -0.19516 0 0.19852 4.83 5.86 7.12 

Total – – – 6.24 8.07 10.56 

Business/Commute -0.45085 0 0.44318 1.46 2.28 3.54 

2033 Recreation/Other -0.19659 0 0.19717 4.90 5.95 7.22 

Total – – – 6.36 8.23 10.76 

Business/Commute -0.45132 0 0.43600 1.57 2.46 3.79 

2040 Recreation/Other -0.19908 0 0.19481 5.15 6.27 7.59 

Total – – – 6.72 8.73 11.38 
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Appendix D. Auto Operating Cost 
The approach for forecasting auto operating costs for the 2018 Business Plan is consistent with the 
methodology used for the 2016 Business Plan, with updates to recognize the following: 

•	 The most current motor gasoline and electricity price projections based on U.S. Energy Information 
Administration’s (EIA) 2017 Annual Energy Outlook (AEO). 

•	 The most current projections of the market penetration of electric vehicles. 

•	 Revised non-gasoline operating costs. 

•	 The most current fuel efficiency projections of the on-the road vehicle fleet. 

•	 Effects of Cap and Trade rules in motor fuel prices and potential effects of an increase in the Federal 
excise tax rate. 

The auto operating costs documented in this appendix are for privately owned vehicles. Appendix F 
provides background on auto operating costs for autonomous and shared use vehicles and their impacts 
on overall auto operating costs as used for the 2040 Phase 1 – Blended risk analysis. 

The following sequential steps were undertaken to calculate the auto operating cost: 

1.		 Project retail fuel and electricity prices in California. 

2.		 Project the market penetration rate for electric vehicles in California. 

3.		 Adjust additional fees and charges based on two scenarios: 

a.		 Cap and Trade. 

b.		 Potential increase in Federal excise tax. 

4.		 Project fuel economy of the electric and nonelectric “on the road” fleet. 

5.		 Estimate nonfuel costs. 

6.		 Combine fuel operating cost with nonfuel operating cost. 

D.1 Fuel Prices 

Historically, California retail gasoline prices have been higher than the U.S. average. As shown in 
Figure D.1, from year 2000 to 2017, the overall average for California prices was consistently 
12.8 percent higher than the U.S. average. 
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California High-Speed Rail 2018 Business Plan 

Figure D.1 Annual Retail Gasoline Prices
	

Source:		 U.S. Energy Information Administration: Annual All Grades All Formulations Retail Gasoline Prices 
http://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_m.htm. 

The EIA forecasts motor gasoline prices through 2050 for three different scenarios in its 2017 Annual 
Energy Outlook (AEO): reference, low, and high. The projections have been increased by 12.8 percent to 
develop projections of retail gas prices in California and are shown in Figure D.2. 

Figure D.2 Low, Reference, and High California Retail Gas Price 

Source: EIA, AEO2017 National Energy Modeling System. 
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California High-Speed Rail 2018 Business Plan 

D.2		 Cap and Trade Effects on Fuel Prices 

On January 1, 2015, the Cap and Trade rules came into effect for the fuel sector in California. The 
California Legislative Analyst’s Office (LAO) estimated in 2017 that Cap and Trade could add $0.15 to 
$0.63 per gallon to retail gasoline prices in 2021 (Table D.1). The ranges were generated from the 
auction reserve price (ARP) and allowance price containment reserve price (APCRP) (i.e., the minimum 
and maximum prices per ton of carbon dioxide allowed at the Cap and Trade auctions). The LAO 
projected these figures out to 2031, and these figures were adopted as estimates of the minimum and 
maximum marginal impact of Cap and Trade on gasoline prices. 

Table D.1 Gasoline Price Increase Due to Cap and Trade, LAO Estimate 

2021 2026 2031 
Minimum (ARP) $0.15 $0.19 $0.24 

Maximum (APCRP) $0.63 $0.67 $0.73 

Source:		 March 29, 2017 Letter from California Legislative Analyst’s Office to Assembly Member Vince Fong. 
http://www.lao.ca.gov/letters/2017/fong-fuels-cap-and-trade.pdf. 

Independent projections of the long-term price of carbon on the Cap and Trade auction market provided 
estimates of the most likely price per ton of carbon as a function of the maximum price through 2028. 
These projections were created by consultants to the Ontario Energy Board (OEB) and the Integrated 
Energy Policy Report (IEPR) produced by the California Energy Commission. The results are found in 
Figure D.3. 

The three forecast years represent, respectively, a year from the midst of the projected years, a year from 
the upper edge of the projected years, and a year well outside the OEB/IEPR forecast. Figure D.3 shows 
that, although the most likely price of carbon is only about one-third of the maximum price in 2025 that 
percentage rises by 2028. 

Thus, to determine the most likely value for the impact of Cap and Trade, the maximum per gallon impact 
of Cap and Trade is interpolated from the 2017 LAO letter, and then multiplied by the average of the two 
percentages in Figure D.3 used for 2029 and 2033. By 2040, it is assumed that the price of carbon will 
stabilize at the midpoint between the minimum and maximum values. These marginal impacts are 
provided in Table D.2. 
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California High-Speed Rail 2018 Business Plan 

Figure D.3 Most Likely Price per Ton of Carbon as a Percentage of the Maximum 
Price per Ton of Carbon 

Source:		 California Energy Commission. “Preliminary GHG Price Projections – Energy Assessment Division.” 
December 19, 2016. 
ICF Consulting Canada. “Long-Term Carbon Price Forecast Report.” Submitted to Ontario Energy Board. 
Last updated July 19, 2017. 

Table D.2		 Minimum, Maximum, and Most Likely Marginal Cost per Gallon 
of Gasoline Due to Cap and Trade (June 2017 Dollars) 

2029 2033 2040 
Minimum $0.23 $0.26 $0.33 

Most Likely $0.39 $0.52 $0.58 

Maximum $0.73 $0.77 $0.84 

D.3		 Federal Fuel Tax Increase Scenario 

For the maximum auto operating cost scenario only, it is assumed that the Federal Government 
introduces a bill that links the Federal fuel tax to the Consumer Price Index. Today, the Federal Fuel Tax 
is $0.184 per gallon. If the Federal Fuel Tax is increased based on adjustment for Consumer Price Index 
(CPI) changes, which are assumed at 2.4 percent per year increase retroactive to year 1993 (i.e., last gas 
tax increase), then the Federal Fuel Tax would be $0.322 per gallon today. This results in the maximum 
scenario adding an additional $0.14 tax to the Fuel Cost projection (i.e., $0.32 – $0.18 = $0.14). 
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California High-Speed Rail 2018 Business Plan 

D.4		 Projections of Fuel Economy of Light-Duty Vehicles 

U.S. National Average, shown in Figure D.4, is used for the assumptions of Fuel Economy projections in 
California.38 For calculating the minimum auto operating cost, the high miles per gallon (MPG) forecast 
was coupled with the low gasoline price forecast; and for the maximum auto operating cost, the low mpg 
forecast was coupled with the high gasoline price forecast. These fuel economy forecasts were used to 
calculate the fuel economy of only the non-electric portion of the vehicle fleet. 

Figure D.4 National Average Fuel Economy Forecasts 

D.5		 Projections of Fuel Economy of Electric Vehicles and Market 
Penetration 

The 2017 Annual Energy Outlook provides an estimate for the fuel efficiency of new vehicles sold in each 
year of the forecast, including electric and other alternative fuel vehicles. It does not, however, include an 
estimate for the fuel efficiency of the on-the-road fleet of alternative fuel vehicles. In order to capture the 
higher fuel efficiency of the electric fleet, the equivalent miles per gallon efficiency of the electric fleet are 
set at 2.5 times the projected fuel efficiency of the Light-Duty Stock Fleet, based on EIA data. This is 
reasonable given the trends in Figure D.5, where the average fuel efficiency of all new electric vehicles is 
2.6 times that of the stock fleet. 

38 U.S. Energy Information Association. 2017. Annual Energy Outlook 2017 with projections to 2050. DOE/EIA-0383 
(2015), April 2017. 
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Figure D.5 National Fuel Economy Forecasts, Including Light-Duty Stock Fleet,
	
All New Vehicles Sales, and New Electric Vehicle Sales
	

Source: EIA, AEO2017 Reference Case. 

The market penetration of electric vehicles is estimated as the number of total electric fuel vehicles 
(including both cars and light trucks) divided by the total size of the stock vehicle fleet. Penetration rates 
were calculated under the 2017 AEO’s reference case, low oil case, and high oil case. The results are 
provided in Figure D.6. 

Figure D.6 Percent Market Penetration of Electric Vehicles by Year 
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D.6		 Nonfuel Operating Vehicle Cost 

The Bureau of Transportation Statistics (BTS) publishes historical average nonfuel auto operating costs. 
The total cost of owning and operating an automobile includes fuel, maintenance, tires, insurance, 
license, registration and taxes, depreciation, and finance costs. Figure D.7 illustrates the nonfuel auto 
operating cost per mile between 1991 and 2016. The low nonfuel auto operating cost scenario is 
calculated as the minimum nonfuel cost between 1991 and 2016 (i.e., 5 cents per mile). The high nonfuel 
auto operating cost scenario is calculated as the maximum nonfuel cost between 1991 and 2014 (i.e., 
8 cents per mile). The most likely value is the current nonfuel auto operating cost (i.e., 7 cents per mile). 
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Figure D.7 Historical Nonfuel Operating Vehicle Cost 

 

       

 

      

      
 

             
                  

     

                
               

               

California High-Speed Rail 2018 Business Plan 

Source:		 CPI, BLS, All Urban Consumer, National Average: 
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/ 
national_transportation_statistics/html/table_03_17.html. 

D.7		 Range of Auto Operating Cost 

The following formulas were used to calculate the minimum, most likely, and maximum auto operating 
cost: 

Minimum Auto Operating Cost = (1 - %EVs) * (Low CA Gas Price + Low C&T Impact + No Increase in 

Federal Gas Tax) / High ICE Fuel Efficiency + %EVs * (Low CA Electricity Price * 33.7) / High EV Fuel
	

Efficiency + Low Nonfuel Operating Costs
	

Most Likely Auto Operating Cost = (1 - %EVs) * (Most Likely CA Gas Price + Avg(Low C&T Impact, High 

C&T Impact) + No Increase in Federal Gas Tax) / Most Likely ICE Fuel Efficiency + %EVs * (Most Likely 


CA Electricity Price * 33.7) / Most Likely EV Fuel Efficiency + Most Likely Nonfuel Operating Costs
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High Auto Operating Cost = (1 - %EVs) * (High CA Gas Price + High C&T Impact + Increase in Federal 
Gas Tax) / High ICE Fuel Efficiency + %EVs * (High CA Electricity Price * 33.7) / High EV Fuel Efficiency 

+ High Nonfuel Operating Costs 

gives the auto operating cost component values and the resulting minimum, most likely, and maximum 
auto operating cost for each forecast year before adjusting for the impact of autonomous and shared 
vehicles for 2040 forecasts. 
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Table D.3 Range of Auto Operating Cost for each Forecast Year by Auto 
Operating Cost Component (June 2017 Dollars) 

Minimum Most Likely Maximum 
2029 Auto Operating Cost ($/mile) $0.17 $0.23 $0.35 

U.S. Gas Price ($/gal) $1.90 $3.06 $5.33 

California Gas Price ($/gal) $2.14 $3.45 $6.01 

California Electricity Price ($/kWH) $0.17 $0.17 $0.18 

% Electric Vehicles 10.51% 7.86% 6.70% 

MPG 31.5 30.5 29.8 

MPGe 78.64 76.14 74.53 

Nonfuel cost ($/mi) $0.10 $0.11 $0.12 

Cap and Trade ($/gal) $0.23 $0.39 $0.73 

Federal Gas Tax Increase ($/gal) $0.00 $0.00 $0.14 

2033 Auto Operating Cost ($/mile) $0.17 $0.23 $0.34 

U.S. Gas Price ($/gal) $1.95 $3.19 $5.52 

California Gas Price ($/gal) $2.20 $3.59 $6.22 

California Electricity Price ($/kWH) $0.18 $0.18 $0.18 

% Electric Vehicles 13.35% 9.75% 8.10% 

MPG 34.3 32.8 31.9 

MPGe 85.84 82.11 79.85 

Nonfuel cost ($/mi) $0.10 $0.11 $0.12 

Cap and Trade ($/gal) $0.26 $0.52 $0.77 

Federal Gas Tax Increase ($/gal) $0.00 $0.00 $0.14 

2040 Auto Operating Cost ($/mile)a $0.17 $0.23 $0.33 

U.S. Gas Price ($/gal) $2.05 $3.39 $5.75 

California Gas Price ($/gal) $2.32 $3.82 $6.49 

California Electricity Price ($/kWH) $0.19 $0.19 $0.19 

% Electric Vehicles 17.16% 12.23% 9.96% 

MPG 37.9 35.5 34.2 

MPGe 92.76 88.79 85.55 

Nonfuel cost ($/mi) $0.10 $0.11 $0.12 

Cap and Trade ($/gal) $0.33 $0.58 $0.84 

Federal Gas Tax Increase ($/gal) $0.00 $0.00 $0.14 
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Appendix E.		 Coefficient on Transit Access-Egress 
Time/Auto Distance Variable 

Between some regions in California, especially in the Silicon Valley to Central Valley scenario, individuals 
who wish to travel primarily by transit to reach their destination must transfer from a high-speed rail (HSR) 
bus or conventional rail (CVR) system before or after traveling on HSR. There is uncertainty around how 
the need to make these transfers affects the overall desirability of traveling by HSR. The uncertainty in 
the desirability of travel by HSR, when the CVR or HSR bus leg of the journey is relatively long in relation 
to the HSR travel length, has an impact on ridership and revenue. Thus, this uncertainty was included as 
a potential risk variable. 

E.1 Options for Addressing Risk in Uncertainty Analysis 

Two primary options were considered for addressing the transit transfer concern in the context of the risk 
analysis. The first option considers a range for the constant associated with the transit access/egress to 
the HSR main mode. The main advantage of this approach is its simplicity. The range used for the 
constant would come directly from conversion of a penalty value (in minutes) to utility. The main 
disadvantage is that the same range would need to be applied to all transfers between access/egress 
transit modes and HSR. This means that the penalty would apply equally to transfers between local 
transit (e.g., someone taking a city bus from their home to the station) and HSR, and transfers between 
CVR or HSR bus and HSR with longer access trips. Transfer between local transit and CVR exists today, 
and thus are accounted for within the model estimation of this variable, while transfers between CVR or 
HSR bus to HSR have not been observed in the estimation dataset. Moreover, it means the penalty 
would not vary on the basis of how long the trip was or how much of the trip was transit versus HSR. 

The second option considers a range for the parameters associated with transit access/egress travel 
times relative to origin-destination (OD) distances. This variable appears in the access and egress modal 
utility functions as follows: 

   

 
 

[𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]
𝛽𝛽×MAX 0,	 − 𝑇𝑇ℎ𝑜𝑜𝑇𝑇𝐷𝐷ℎ𝑜𝑜𝑜𝑜𝑜𝑜  [𝑂𝑂𝑂𝑂 𝑂𝑂𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑇𝑇] 

In the base model, several threshold parameter options were tested in model estimation, and a value of 
0.2 was ultimately identified. The values of beta (the variable coefficient) were estimated directly and 
were found to be negative. Separate coefficients were estimated for auto access/egress modes versus 
nonauto access/egress modes (transit and walk/bike), with the magnitude of auto coefficients estimated 
to be much larger. This variable provides a disincentive for selecting a main mode that requires a long 
access or egress time, relative to the entire trip length. 

The main advantage of the second option is that this differentiation would naturally occur between local 
transit and longer CVR or HSR bus connections. Since local transit connections would typically be very 
short distance and CVR or HSR bus may be short or long distance, the “penalty” associated with transit 
access/egress would reflect the access/egress mode’s overall share of the total trip length. The second 
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option is more appropriate for the risk analysis. The uncertainty associated with the variable is only 
applied for the HSR main mode (i.e., not air or CVR). 

E.2 Development of the Range in the Risk Variable Parameters 

Figure E.1 and Figure E.2 show the variable’s effect under the current model specification (in terms of 
equivalent minutes of travel time 39) for the recreation/other purpose (the results are very similar for 
business and commute trip purposes). The first plots penalty versus OD distance for constant egress 
times, and the second plots penalty versus egress time for constant OD distance values. The same 
concepts apply to the access end of trips. The egress end is shown only as an example; the access time 
graph is identical. 

In both figures, certain regions of the graphs suggest very high penalties for certain types of trips. For 
instance, Figure E.1 shows very high penalties for the 100-minute egress line when OD distance is less 
than 100 miles. Likewise, Figure E.2 shows very high penalties for the 50-mile OD distance line when 
egress time is high.40 Travelers typically do not make trips of this nature, since other main modes would 
be highly favored, so these penalty values are very unlikely to be applied in practice. 

        

 

 
 

 

 

Figure E.1 Penalty versus Origin-Destination Distance for Constant Egress Times 
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39 “Equivalent minutes of travel time” is estimated by dividing a constant or a variable by the coefficient associated 
with travel time. Equivalent minutes of travel time provides a convenient way to measure the magnitude of 
“unexplained variation” of a model constant using an understandable metric, and to compare values among 
different models. Equivalent minutes of travel time is a derived measure that can be computed for any model 
variable. So, for example, a $72 HSR fare (2005 dollars) for an interchange in the recreation/other mode choice 
model would equate to 337 equivalent minutes of travel time, while the implied equivalent minutes of travel time 
savings for group travel in an auto for the interchange would equate to a savings of 619 equivalent minutes of travel 
time. Note, however, these variables are important for their contributions to the mode choice utility function, not as 
direct measures of travel time. 

40 A chart of penalty versus OD distance for constant access time would look identical to the chart for egress time. 
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Figure E.2 Penalty versus Egress Time for Constant Origin-Destination Distance 
Values 

  

) . 800 

ni
M 700 

. vi 600 

uq 500 

(E
ty
 

l 400 

ane 300 

P
s 200 

ser 100 gE 0 
0 20 40 60 80 100 120 140 160 

Egress Time (Minute) 

50-mi OD Distance 150-mi OD Distance 250-mi OD Distance 
350-mi OD Distance 450-mi OD Distance 

            
           

              

California High-Speed Rail 2018 Business Plan 

The variable parameter range was developed using a French HSR experience as a guide. In 1981, SNCF 
(the French railway company) transitioned a 350-mile direct CVR route between Paris and Grenoble to a 
HSR trip between Paris and Lyon and then a CVR access/egress trip between Lyon and Grenoble. The 
original CVR trip took 300 minutes, but the new HSR trip required 120 minutes of travel on HSR and 90 
minutes of access/egress time on CVR. 41 This change saved travelers approximately 90 minutes of travel 
time, but did not increase ridership between Paris and Grenoble. 

We proposed a 90-minute penalty as a rough benchmark for determining a lower bound on the model 
parameters since ridership did not increase in the French example even with the 90-minute time savings. 
Using an OD distance of 350 miles, an egress time of 90 minutes, and the aforementioned 90-minute 
savings to estimate a 90-minute penalty, several approaches were tested to achieve an appropriate lower 
bound for the variable. The approaches were based on the ways the variable could be affected by 
uncertainty. The first is the effect on the coefficient associated with the variable. The second is the effect 
on the threshold variable which, in the BPM-V3, is set such that the variable takes a value of zero when 
the ratio of access/egress time to distance is less than 0.2. The threshold value was set in model 
estimation by trial and error. The value of 0.2 was selected for the BPM-V3 because it fit the data better 
than other potential values. 

Several options were considered for setting lower bounds for the threshold variable. Based on a review of 
potential options, threshold values of 0.05 and 0.10 were tested. In both cases, the coefficient on the 
variable was selected so that the value of the penalty was about 60 minutes for a case similar to the 
French example. A 60-minute penalty was used instead of the 90-minute penalty observed in the French 

41 The OD distance and egress times cited for the French experience are approximate, as it is based on Google maps 
and train timetables. While the network distance is about 350 miles between Paris and Grenoble, the straight-line 
distance is only 300. And, some egress train options took longer than 90 minutes, up to and over 120 minutes. 
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experience, because it offered more reasonable model behavior overall, and it was not desirable to 
change the long-distance models in unreasonable ways to match a single observed data point. Figure E.3 
and Figure E.4 plot the penalty versus egress time to OD distance ratios for baseline, drive access/egress 
variables, transit access/egress variables with threshold value of 0.05, and transit access/egress 
variables with threshold value of 0.10. Figure E.3 shows the results for the business/commute purpose, 
and Figure E.4 shows results for the recreation/other purpose. The drive access/egress variable is plotted 
for comparison purposes only, and has no bearing on the variable discussed in this section. It applies 
when the access/egress mode is an auto mode (rather than transit). 
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Figure E.3		 Business/Commute Penalty versus Egress Time to Origin-
Destination Distance Ratios for Baseline, Drive Access/Egress 
Variables, and Transit Access/Egress Variable Options 
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Figure E.4		 Recreation/Other Penalty versus Egress Time to Origin-Destination 
Distance Ratios for Baseline, Drive Access/Egress Variables, and 
Transit Access/Egress Variable Options 
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E.3		 Range of Coefficient on Transit Access-Egress Time/Auto Distance 
Variable 

The transit access/egress variable with threshold value of 0.10 was chosen as the low scenario. This 
threshold was chosen over 0.05, because it causes less disruption to the relationships between the drive 
and transit access/egress variables for trips with shorter access/egress (e.g., when the ratio of access or 
egress time to OD distance is around 0.1 to 0.2). The minimum coefficient value is set to -2.0 for 
business/commute purpose and -1.3 for recreation/other purpose. These are set to achieve penalty 
values of 51 and 66 minutes. These penalty value benchmarks come from the penalties the model 
suggests for the French scenario for drive access/egress modes. The lower bound on the transit penalty 
should not exceed the penalty suggested by the model for drive access/egress modes. A 51-minute and 
66-minute penalty was used instead of the 90-minute penalty observed in the French experience because 
it offered more reasonable model behavior overall, and it was not desirable to change the long-distance 
models in unreasonable ways to match a single observed data point. The coefficient and threshold values 
vary in parallel (i.e., perfect correlation) for the full model runs and Monte Carlo simulation. 

The maximum threshold and coefficient values are set to be identical to the calibrated base/most likely 
values since there is no evidence to suggest that the penalty to transfer from transit to HSR should be 
less than the penalty used for CVR and air that was developed based on observed data. 
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Appendix F. Quantifying the Effects of Autonomous and 

Shared Use Vehicles on Year 2040 Risk 
Variables 

By 2040, it is likely that autonomous vehicles (AV) and shared-use vehicles will compose some share of 
automobile travel. AVs could have important features that change the auto mode’s perception among 
travelers, while the increase in shared-use vehicles could directly affect the auto operating cost of 
travelers, which may impact HSR ridership and revenue. The risk analysis framework considers three key 
features of the auto mode that might change due to AVs and shared-use vehicles: 1) auto in-vehicle time, 
2) auto operating costs, and 3) travelers’ perceptions of the disutility of travel time in AVs. 

F.1 Autonomous Vehicle Background and Research 

AVs represent three potential risks to the revenue and ridership forecasts. First, AVs may reduce auto 
travel times. Second, AVs may decrease the operating cost of autos. And third, AVs may decrease the 
disutility of in-vehicle time because travelers are able to focus on activities other than driving. 

One potential impact of AV technology is the reduction of travel times and improvement of travel speeds 
by connecting vehicles, allowing them to travel much closer to one another at high speeds, thus 
effectively increasing capacity and reducing congestion. The bulk of the travel time benefits from AVs 
require AVs to make up a majority of all cars on the road, with peak benefits achieved only after AV 
market penetration reaches about 75 percent. It is also possible that AVs could contribute to congestion 
in the near term, depending on the programs that control them and how well they are able to interact with 
non-AVs.42 Also, especially in urban areas, increased congestion could be caused by 0-occupant AVs 
traveling to pick up passengers or returning to remote parking locations. Auto travel time was included as 
a risk variable in the 2016 Business Plan, but its effect on high-speed rail ridership was minimal and thus 
was not ultimately included in the 2018 Business Plan. 

AVs may decrease auto operating costs via better gas mileage, lower insurance premiums if crashes can 
be reduced and reduced parking costs, as AVs could potentially drop a passenger off and find free or 
cheaper parking. The possibility of increased vehicle miles traveled (VMT) due to travel with no 
passenger (e.g., to park) could effectively increase operating costs, though this would require it being 
legal for AVs to travel without an operator, which could be further into the future than 2040. 

Because travelers will be able to engage in other activities in AVs (e.g., checking email, reading, or even 
sleeping), AVs offer the possibility that being in one’s car may be less onerous. This will be 
accommodated in the model by adjusting the in-vehicle time coefficient associated with the auto mode, as 
described in Section 3.10. 

42 Litman, Todd. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. February 27, 
2015. Victoria Transport Policy. 
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F.2 Autonomous Vehicle Market Penetration Assumptions 

AV market penetration is a key risk variable that informs both the uncertainty in auto in-vehicle coefficient 
and the uncertainty in auto operating costs. For instance, if market penetration of AVs is 0 percent, then 
we expect no change to auto in-vehicle coefficient or operating costs. However, if market penetration is 
50 percent, we expect a less onerous automobile experience for those using AVs and some effect on 
operating costs. Several recent studies and papers have provided a range of suggestions: 

•	 In 2014, it was suggested that under the right circumstances, AVs could represent 50 to 75 percent of 
the auto market by 2035 to 204543; 

•	 A 2015 forecast suggested that AVs will have 30 percent market penetration in the 2040s (but 
40 percent of all travel), 50 percent market penetration in the 2050s, and 75 percent market 
penetration will occur sometime after 206044; and 

•	 An alternative 2015 forecast suggested that market penetration will be between 1 percent and 
11 percent by 2030 and 7 percent and 61 percent in 2050, depending on a number of factors.45 

Based on this research, it is assumed that the market penetration of autonomous vehicles among the 
owned vehicle market in 2040 is a triangular distribution with minimum 10 percent, maximum 75 percent, 
and most likely 35 percent. 

F.3 Shared-Use Vehicle Market Penetration Assumptions 

The shared-use market penetration was calculated using a series of assumptions.46 It was asserted that 
the long-distance trip shared-use market would vary by area type of the household, with households in 
denser areas being more likely to use shared-use vehicles. For each area type, a low, most likely, and 
high value of shared-use vehicle usage was asserted based on professional judgment. From those 
assertions, a weighted low, most likely, and high value was computed based on long-distance trip shares, 
as shown in Table F.1. The market penetration share is assumed to have a triangular distribution. 

43 Bierstedt, J., A. Gooze, C. Gray, J. Peterman, L. Raykin, and J. Walters, 2014. Effects of Next Generation Vehicles 
on Travel Demand and Highway Capacity by FP Think Working Group Members. FP Think Working Group. 

44 Littman, T., 2015. Autonomous Vehicle Implementation Predictions:  Implications for Transport Planning. 
February 27, 2015. Victoria Transport Policy. 

45 Milakis, D., M. Snelder, B. van Arem, B. van Wee, and G. Correia.  2015. Development of Automated Vehicles in 
the Netherlands:  Scenarios for 2030 and 2050. Delft, The Netherlands:  Delft University of Technology. 

46 The market penetration rates used in this analysis are in addition to the year 2010 (i.e., model calibration year) 
market penetration for shared-use vehicles used for long-distance trips, such as rental cars. 
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Table F.1 Shared-Use Market Penetration by Area Type
	

Long-Distance Auto Trips Using Shared-Use 
Vehicles in Year 2040 

Area Type 
Long-Distance 

Trips 
Long-Distance
Trip Share Low Most Likely High 

CBD-Bay Area 74,684 3% 0.2 0.3 0.5 

Urban-Bay Area 10,0619 5% 0.1 0.2 0.45 

CBD-Other 71,068 3% 0.1 0.2 0.45 

Urban-Other 226,623 11% 0.05 0.1 0.35 

Small Urban 157,145 7% 0 0.1 0.2 

Suburban 1,055,053 49% 0 0 0.1 

Rural 461,141 21% 0 0 0.1 

Weighted Total 2% 5% 20% 

F.4		 Development of Autonomous Vehicle Auto Operating Cost 
Uncertainty 

As discussed in Appendix D, the auto operating cost for privately owned non-AVs comprises different 
components. These components are treated together as one auto operating cost, which is referred to as 
𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 . Additional uncertainty was added to pertinent subcomponents, representing the uncertainty in 
auto operating costs due to AV adoption and shared-use vehicles. Key variables we considered were the 
level of AV market penetration and shared-use market share. 

Because the marginal cost of trips made by shared-use vehicle will include additional costs over and 
above typical operating costs, those additional costs were considered. For instance, shared-use trips will 
be charged a surcharge, similar to a toll either based on the amount of time the vehicle is used or 
distance traveled. To keep the surcharge in the same units as auto operating cost, it is assumed the 
surcharge is based on distance traveled and would incur a charge per mile traveled. Ranges for cost per 
mile are predicted by Litman to be between $0.60 and $1.00 per mile, though this seems high given that 
current shared-use costs are on the order of $0.15 to $0.60 per mile.47 Given that AVs may dominate this 
market and might have higher purchase prices, it is conceivable that the costs will be higher by 2040, but 
probably not as high as forecast by Litman. It is, therefore, assumed that shared-use cost per mile is a 
uniform distribution with minimum $0.18 and maximum $0.85 (2014 dollars). 

AVs are predicted to drive in a more energy efficient manner compared to non-AV drivers due to a 
decrease in stop-and-go tendencies. Fuel economy could increase by as much as 23 to 39 percent.48 It is 

47 Litman, T. 2015. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. 
February 27, 2015. Victoria Transport Policy. 

48 Eno Center for Transportation. 2013. Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and 
Policy Recommendations, Eno Center for Transportation, October 2013. 
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assumed that fuel economy improvements of AVs are uniform distribution with minimum 10 percent and 
maximum 50 percent. For the purpose of the risk analysis, the 50-percent improvement is a more 
conservative assumption than the Eno prediction. As discussed in Appendix D, fuel costs represent 
approximately 40 percent of the low auto operating costs, 50 percent of the base auto operating costs, 
and 66 percent of the high auto operating costs. It is assumed that only fuel costs would be affected by 
fuel economy improvements resulting from AV use. 

 𝑂𝑂𝑂𝑂𝐵𝐵𝑎𝑎𝑎𝑎 = 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

The overall average auto operating cost is computed as a blended average for each market as follows: 

Here, 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the portion of operating costs attributable to owned non-AVs and is computed as: 

 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝑆𝑆𝑛𝑛𝑛𝑛 ) ∗ (1 − 𝑆𝑆𝑛𝑛𝑛𝑛 ) ∗ 𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

𝑆𝑆𝑛𝑛𝑛𝑛 is the market share of long-distance trips that use a shared vehicle (i.e., (1 − 𝑆𝑆𝑛𝑛𝑛𝑛 ) is the market share 
of long-distance trips that use a nonshared vehicle); 𝑆𝑆𝑛𝑛𝑛𝑛 is the market penetration of AVs among 
nonshared use vehicles; and 𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the base value of operating cost that comes from the distribution 
described in Appendix D for other model years. 

𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛 is the portion of operating costs attributable to owned AVs and is computed as: 

 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝑆𝑆𝑛𝑛𝑛𝑛 ) ∗ 𝑆𝑆𝑛𝑛𝑛𝑛 ∗ 𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 1 − 𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐹𝐹𝐹𝐹  +  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐹𝐹𝐹𝐹 

 
1 + 𝐹𝐹𝐸𝐸𝑛𝑛𝑛𝑛 

𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐹𝐹𝐹𝐹 represents the share of base auto operating cost attributable to fuel. 𝐹𝐹𝐸𝐸𝑛𝑛𝑛𝑛 is the fuel economy 
improvements achieved by AVs, on average. 𝑂𝑂𝑂𝑂𝐵𝐵𝑎𝑎𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the contribution of shared-use 
vehicles to average auto costs and is computed as follows: 

   =𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑛𝑛𝑛𝑛 ∗ (1 − 𝑆𝑆𝑛𝑛𝑛𝑛 ) ∗ 𝑂𝑂𝐶𝐶𝐶𝐶𝐵𝐵𝑎𝑎 + 𝑆𝑆𝑛𝑛𝑛𝑛 ∗ 𝑆𝑆𝑛𝑛𝑛𝑛 ∗ 𝑂𝑂𝐶𝐶𝐶𝐶𝐵𝐵𝑎𝑎 

𝑂𝑂𝐶𝐶𝐶𝐶𝐵𝐵𝑎𝑎 is the cost per mile surcharge of shared vehicles. 

Figure F.1 shows the distribution of auto operating costs in 2040. The black line corresponds to the 
distribution of the base auto operating costs; and the red line is the overall average auto operating cost 
distribution, based on the first, blended equation outlined above. The minimum auto operating cost is 
14 cents per mile, the most likely is 22 cents per mile, and the maximum is 39 cents per mile (June 2017 
Dollars). 

Cambridge Systematics, Inc.
F-4 



   

  
 

       

 

 

California High-Speed Rail 2018 Business Plan 

Figure F.1 Distribution of Auto Operating Costs in Year 2040
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Appendix G. Exceptionally Long Access and Egress:
	
Experience from Japan
	

Few international high-speed rail (HSR) stations exhibit comparable examples of exceptionally long 
access and egress as might be possible with California High Speed Rail, particularly in a Silicon Valley to 
Central Valley scenario. There is generally no significant population center anywhere in the developed 
world that is more than a three-hour drive from an airport. There is also no significant population center in 
Western Europe that is more than a three-hour drive from a high-speed rail station. Some cities in China 
have very long access/egress to the Chinese high-speed rail network, but generally all lines terminate in 
major cities, providing sufficient demand to saturate rail usage without any long access/egress travel. 

The only case we identified with the requisite characteristics is the Hokkaido Shinkansen line in Japan. 
The Hokkaido Shinkansen in Japan, designed to ultimately connect Tokyo to Sapporo, is currently under 
construction. This line is partially open for revenue service today. Last year, service began from Tokyo 
and reached as far north as Sin-Hakodate-Hokuto, a rail station in the south of the Island of Hokkaido 
(see Figure G.1). 

Figure G.1 Hokkaido Shinkansen High-Speed Rail Line in Japan 

SAPPORO 

HAKODATE 

TOKYO 

It is a 3.5-hour, 180-mile drive from central Sapporo (Japan’s fifth largest city) to the Hakodate terminal, 
or about the same travel time via Conventional Rail (CVR). This is slightly farther than the Los Angeles to 
Bakersfield connection, but comparable to the travel from San Diego to Bakersfield (4 hours, 210 miles). 
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The City of Hakodate has a population similar in size to Bakersfield. Tokyo has about three times the 
population of Los Angeles. 

Hokkaido (Sapporo) is a separate island from Honshu (Tokyo). Travel between them is only by air, sea, 
and rail (via tunnel). Driving from Sapporo to Tokyo requires an expensive and relatively slow ferry 
segment. The air travel market from Tokyo to Sapporo is the second largest city-to-city market in the 
world by passenger volume, with roughly double the passenger traffic of the Los Angeles to 
San Francisco market. 

The Hokkaido line does not appear to draw many riders, even with the substantial air travel demand 
between the two locations and an expensive and slow auto alternative. Reports in the media note that, in 
its first 16 days of operation, it averaged a bit under 6,000 passengers per day (about 2 million annual 
passengers)’. The Hokkaido Railway Company (an arm of the Japanese government) expects to lose 
money on this line for at least a decade, until the connection through the mountains to Sapporo is 
completed. 

We have not found any detailed forecasts for the Hokkaido line; however, the ridership numbers for the 
Shinkansen, or bullet train, appear to be consistent with the theory that the HSR ridership in the Tokyo to 
Sapporo market is negligible, and the majority of the riders today actually have origins or desinations in or 
around Hakodate. This finding supports the inclusion of the exceptionally long access/egress risk variable 
to help determine the impact on ridership requiring long access/egress. 

Cambridge Systematics, Inc.
G-2 



   

  
 

       
       

            
     

  

            
          

         
            

          
        

           
              

        
           

           
         
               

         
            

      

    
          

          
       

               
        

   

       
      

          
             

           
           

      
    

              
            

        

California High-Speed Rail 2018 Business Plan 

Appendix H. Technical Details for the Application of GPR
	

Gaussian Process Regression (GPR) represents a well-accepted and widely used method for meta-model 
analysis of computer simulations. This appendix addresses some of the technical details of the GPR 
methodology as applied in this risk analysis. 

H.1 De-trending 

When the output exhibits a clear trend (i.e., can be modeled well with linear regression), it is typical to use 
both Linear Regression (LR) and GPR models simultaneously. First, an LR model is used to “de-trend” the 
data, generating a rough prediction of the outcome values at each observation point. Then, the GPR model 
is constructed from the input values and the residuals of the LR model; not the actual observed output 
values. By applying GPR on the residuals alone, the GPR is used to explain the localized deviation from the 
overall (linearly modeled) trend, and not the trend itself. 

Applying GPR jointly with LR is advantageous for multiple reasons. First, the particular individual coefficients 
of the LR model may themselves be of interest, as they indicate the magnitude and direction of the basic 
high-level relationship between the input and output variables. When employed without an LR, the GPR 
model does not directly provide individual variable coefficients in the same manner. This prevents a simple 
evaluation of the face validity of the meta-model results (e.g., does ridership increase when fares decrease?) 
Second, most GPR kernels (the mathematical form used to express autocorrelation) assume the underlying 
process does not have a global trend. For predictions of outputs for inputs that are sufficiently distant from 
any observed data, the GPR expectation will tend to revert to the global mean outcome of the observed data, 
which may be very different from the trend line outcome, particularly for input values that are near (or 
beyond) the extreme values of the input factor space. 

For these reasons, we have adopted the de-trending approach; whereby, ridership and revenue 
meta-models comprise an LR model that is refined by a GPR. When using this approach, GPR can be 
considered an extension and enhancement of LR, rather than a replacement. This approach replaces the LR 
assumption that errors are independent with the GPR assumption that errors are auto-correlated. Because 
we know this is the case for deterministic models, including Business Plan Model – Version 3 (BPM-V3), we 
are guaranteed to achieve a better fitting meta-model using this process than using LR alone. 

H.2 Kernel Selection 

GPR models must make an assumption about the mathematical form of the correlation between 
observations. Different assumptions lead to different models. These assumptions are embedded in the 
selection of the “kernel” function for the regression model. Various kernels make different assumptions about 
the smoothness and stability of the correlation, as well as the overall level of noise in the model. Most 
statistical modeling tools for GPR applications include a number of standard kernel functions, such as the 
radial basis function, Matérn, and others. The selection of a particular kernel function is generally made 
based on knowledge of the behavior of the underlying model, or through experimentation with the cross-
validation of various kernels (see below). 

For risk analysis of models where the relevant input variables compose a set measured in different units, it is 
important to use an anisotropic kernel. This kind of kernel allows for the scale of autocorrelation to vary 
independently in each dimension in contrast with isotropic kernels, where the scale of autocorrelation is 
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restricted to be the same in all dimensions. Isotropic kernels are appropriate when the dimensions are literal 
spatial dimensions (e.g., latitudinal and longitudinal distance). 

For this risk analysis, we evaluated a variety of kernel functions across multiple forecast years and 
operational scenarios, and found the variation in model fit across different anisotropic kernels to be generally 
immaterial. We ultimately developed GPR meta-models for all forecast years and operating scenarios using 
an anisotropic radial basis function.49 

H.3 Cross Validation 

One feature of using GPR with deterministic main models is that there are no “residuals” for sampled 
observations used in model estimation: the expected value always passes exactly through every observation 
point. An important consequence of this feature is that GPR models cannot be evaluated based on traditional 
“goodness of fit” measures (e.g., R2) derived from the estimation data. R2 measures the ratio between 
explained variation and total variation in outcome measures, but the GPR expectation values always 
“explains” all of the variation in outcomes; since GPR models have no residuals, this measure is 
meaningless for such models. Instead of measuring goodness of fit directly based on estimation data, it is 
necessary to measure fit on a validation data set that is not used for model estimation. Because it is usually 
expensive to collect additional validation data, it is preferred to conduct K-fold cross validation (CV). For this, 
the set of observations is randomly partitioned into K subsets (typically 5 to 10; for this risk analysis we have 
used K=10). The entire GPR model is re-estimated using the same kernel and K-1 subsets of the data 
(leaving one out). Then a model score is calculated by using the result to predict the outcomes on the 
remaining held-out subset of observations. The entire process is repeated iteratively holding out each of the 
K subsets one at a time, and then averaging the resulting scores. The CV score is interpreted in roughly the 
same manner as R2 for LR models, such that a score of 1.0 indicates a perfect prediction, and a score of 0.0 
is achieved by predicting the global mean of the dependent variable. When the GPR is applied to de-trended 
data (i.e., on top of a LR model), the resulting CV scores are calculated based on the residuals from the LR 
model, so they represent the relative improvement in fit over the LR result, and are not directly comparable to 
the R2 values. 

49 For mathematical details of the implementation refer to the scikit-learn documentation: http://scikit-
learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html. 
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